login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A090491
G.f.: (1+x^3+x^4+x^5+x^6+x^9)/((1-x)*(1-x^2)^2*(1-x^3)*(1-x^4)).
0
1, 1, 3, 5, 10, 15, 26, 37, 57, 79, 112, 149, 202, 260, 338, 425, 536, 659, 812, 980, 1184, 1408, 1673, 1963, 2302, 2670, 3094, 3554, 4077, 4642, 5279, 5964, 6730, 7552, 8463, 9438, 10513, 11659, 12915, 14252, 15709, 17256, 18935, 20713, 22635, 24667, 26854
OFFSET
0,3
COMMENTS
Molien series for permutation representation of S_4 on pairs of elements from a set of size 4.
REFERENCES
H. Derksen and G. Kemper, Computational Invariant Theory, Springer, 2002; p. 92.
FORMULA
G.f.: ( -1+x-x^2-x^6+x^7-x^8-x^4 ) / ( (1+x+x^2)*(x^2+1)*(1+x)^2*(x-1)^5 ). - R. J. Mathar, Dec 18 2014
a(n)=2*a(n-1)-a(n-3)-2*a(n-5)+2*a(n-6)+a(n-8)-2*a(n-10)+a(n-11) for n>10. - Harvey P. Dale, Apr 10 2015
MATHEMATICA
CoefficientList[Series[(1+x^3+x^4+x^5+x^6+x^9)/((1-x)(1-x^2)^2(1-x^3)(1-x^4)), {x, 0, 50}], x] (* or *) LinearRecurrence[{2, 0, -1, 0, -2, 2, 0, 1, 0, -2, 1}, {1, 1, 3, 5, 10, 15, 26, 37, 57, 79, 112}, 50] (* Harvey P. Dale, Apr 10 2015 *)
CROSSREFS
Sequence in context: A238620 A074968 A308826 * A126728 A070557 A225751
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 02 2004
STATUS
approved