OFFSET
0,3
LINKS
G. E. Andrews, MacMahon's Partition Analysis II: Fundamental Theorems, Annals Combinatorics, 4 (2000), 327-338.
L. Colmenarejo, Combinatorics on several families of Kronecker coefficients related to plane partitions, arXiv:1604.00803 [math.CO], 2016. See Table 1 p. 5.
FORMULA
G.f.: 1/((1-x)*((1-x^2)*...*(1-x^m))^2*(1-x^(m+1))) for m = 4.
MAPLE
a:= n-> (Matrix(24, (i, j)-> if (i=j-1) then 1 elif j=1 then [1, 2, 0, -1, -4, -2, 1, 5, 6, 0, -4, -6, -4, 0, 6, 5, 1, -2, -4, -1, 0, 2, 1, -1][i] else 0 fi)^n)[1, 1]: seq (a(n), n=0..50); # Alois P. Heinz, Jul 31 2008
MATHEMATICA
m = 4; n = 45; gf = 1/((1-x)*Product[1-x^k, {k, 2, m}]^2*(1-x^(m+1))) + O[x]^n; CoefficientList[gf, x] (* Jean-François Alcover, Jul 17 2015 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 07 2002
STATUS
approved