login
A070555
Sum of positive integers k, where k <= n and gcd(k,2n+1) = gcd(k+1,2n+1).
2
1, 1, 6, 15, 12, 45, 66, 21, 120, 153, 50, 231, 180, 117, 378, 435, 144, 255, 630, 209, 780, 861, 198, 1035, 840, 375, 1326, 729, 476, 1653, 1770, 465, 1056, 2145, 714, 2415, 2556, 555, 1710, 3003, 1080, 3321, 1890, 1161, 3828, 2475, 1334, 2397, 4560, 1323
OFFSET
1,3
COMMENTS
Note that whenever gcd(k,2n+1) = gcd(k+1,2n+1), this common value must be 1. - David Wasserman, May 13 2003
PROG
(MATLAB) function m = A070555(n) m = 0; for k = 1:(2*n + 1) if gcd(k, 2*n + 1) == gcd(k + 1, 2*n + 1) m = m + k; end end
CROSSREFS
Bisection of A069828.
Sequence in context: A161397 A145257 A245200 * A265388 A334352 A128512
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Apr 29 2002
EXTENSIONS
More terms from David Wasserman, May 13 2003
STATUS
approved