login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A265388
a(n) = gcd{k=1..n-1} binomial(2*n, 2*k), a(1) = 0.
7
0, 6, 15, 14, 15, 33, 91, 2, 51, 19, 11, 23, 65, 3, 435, 62, 17, 3, 703, 1, 41, 43, 23, 47, 35, 1, 159, 7, 29, 59, 1891, 2, 1, 67, 1, 71, 2701, 1, 1, 79, 123, 249, 43, 1, 267, 1, 47, 1, 679, 1, 101, 103, 53, 321, 109, 1, 113, 1, 59, 1, 671, 1, 5, 254, 5, 1441
OFFSET
1,2
LINKS
FORMULA
For prime p>2, valuation(a(n), p) = 1 if 2*n = p^i+p^j for some i<=j, 0 otherwise (see Theorem 2 in McTague).
MATHEMATICA
Table[GCD @@ Array[Binomial[2 n, 2 #] &, {n - 1}], {n, 1, 66}] (* Michael De Vlieger, Dec 09 2015, modified to match the new corrected data by Antti Karttunen, Dec 11 2015 *)
PROG
(PARI) allocatemem(2^30); A265388(n) = if(n<=1, 0, gcd(vector(n-1, k, binomial(2*n, 2*k)))) \\ PARI versions before 2.8 return an erroneous value 1 for gcd of an empty vector/set. - Michel Marcus, Dec 08 2015 and Antti Karttunen, Dec 11 2015
for(n=1, 10000, write("b265388.txt", n, " ", A265388(n)));
(Scheme)
(define (A265388 n) (let loop ((z 0) (k 1)) (cond ((>= k n) z) ((= 1 z) z) (else (loop (gcd z (A007318tr (* 2 n) (* 2 k))) (+ k 1))))))
;; A version using fold. Instead of fold-left we could as well use fold-right:
(define (A265388 n) (fold-left gcd 0 (map (lambda (k) (A007318tr (* 2 n) (* 2 k))) (range1-n (- n 1)))))
(define (range1-n n) (let loop ((n n) (result (list))) (cond ((zero? n) result) (else (loop (- n 1) (cons n result))))))
;; In above code A007318tr(n, k) computes the binomial coefficient C(n, k), i.e., Pascal's triangle A007318. - Antti Karttunen, Dec 11 2015
CROSSREFS
Cf. A265394 (positions of records), A265395 (record values), A265401 (positions of ones), A265402 (fixed points), A265403 (positions where a(n) = 2n-1).
Sequence in context: A145257 A245200 A070555 * A334352 A128512 A352098
KEYWORD
nonn
AUTHOR
Michel Marcus, Dec 08 2015
STATUS
approved