login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = gcd{k=1..n-1} binomial(2*n, 2*k), a(1) = 0.
7

%I #40 Dec 17 2015 10:37:46

%S 0,6,15,14,15,33,91,2,51,19,11,23,65,3,435,62,17,3,703,1,41,43,23,47,

%T 35,1,159,7,29,59,1891,2,1,67,1,71,2701,1,1,79,123,249,43,1,267,1,47,

%U 1,679,1,101,103,53,321,109,1,113,1,59,1,671,1,5,254,5,1441

%N a(n) = gcd{k=1..n-1} binomial(2*n, 2*k), a(1) = 0.

%H Antti Karttunen, <a href="/A265388/b265388.txt">Table of n, a(n) for n = 1..10000</a>

%H Carl McTague, <a href="http://arxiv.org/abs/1510.06696">On the Greatest Common Divisor of C(q*n,n), C(q*n,2*n), ...C(q*n,q*n-q)</a>, arXiv:1510.06696 [math.CO], 2015.

%F For prime p>2, valuation(a(n), p) = 1 if 2*n = p^i+p^j for some i<=j, 0 otherwise (see Theorem 2 in McTague).

%t Table[GCD @@ Array[Binomial[2 n, 2 #] &, {n - 1}], {n, 1, 66}] (* _Michael De Vlieger_, Dec 09 2015, modified to match the new corrected data by _Antti Karttunen_, Dec 11 2015 *)

%o (PARI) allocatemem(2^30); A265388(n) = if(n<=1, 0, gcd(vector(n-1, k, binomial(2*n, 2*k)))) \\ PARI versions before 2.8 return an erroneous value 1 for gcd of an empty vector/set. - _Michel Marcus_, Dec 08 2015 and _Antti Karttunen_, Dec 11 2015

%o for(n=1, 10000, write("b265388.txt", n, " ", A265388(n)));

%o (Scheme)

%o (define (A265388 n) (let loop ((z 0) (k 1)) (cond ((>= k n) z) ((= 1 z) z) (else (loop (gcd z (A007318tr (* 2 n) (* 2 k))) (+ k 1))))))

%o ;; A version using fold. Instead of fold-left we could as well use fold-right:

%o (define (A265388 n) (fold-left gcd 0 (map (lambda (k) (A007318tr (* 2 n) (* 2 k))) (range1-n (- n 1)))))

%o (define (range1-n n) (let loop ((n n) (result (list))) (cond ((zero? n) result) (else (loop (- n 1) (cons n result))))))

%o ;; In above code A007318tr(n,k) computes the binomial coefficient C(n,k), i.e., Pascal's triangle A007318. - _Antti Karttunen_, Dec 11 2015

%Y Cf. A007318, A014410, A014963.

%Y Cf. A265394 (positions of records), A265395 (record values), A265401 (positions of ones), A265402 (fixed points), A265403 (positions where a(n) = 2n-1).

%K nonn

%O 1,2

%A _Michel Marcus_, Dec 08 2015