OFFSET
0,3
FORMULA
Let p be a prime and let ordp(n,p) denote the exponent of the largest power of p which divides n. For example, ordp(48,2)=4 since 48 = 3*(2^4). Then the prime factorization of a(n) appears to be given by the formula ordp(a(n),p)= sum_{k >= 1} [(2*(p^k)-1)*floor((n/(p^k)))^2] + 2*sum_{k >= 1} [floor(n/(p^k))*mod(n,p^k)], for each prime p. See the comments sections of A092143, A092287, A129365 and A129454 for similar conjectural prime factorizations. - Peter Bala, Apr 23 2007
MAPLE
f := n->mul(mul(lcm(j, k), k=1..n), j=1..n);
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 03 2004
STATUS
approved