login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A018806
Sum of gcd(x, y) for 1 <= x, y <= n.
12
1, 5, 12, 24, 37, 61, 80, 112, 145, 189, 220, 288, 325, 389, 464, 544, 593, 701, 756, 880, 989, 1093, 1160, 1336, 1441, 1565, 1700, 1880, 1965, 2205, 2296, 2488, 2665, 2829, 3028, 3328, 3437, 3621, 3832, 4152, 4273, 4621, 4748, 5040, 5373, 5597, 5736, 6168
OFFSET
1,2
COMMENTS
a(n) is also the entrywise 1-norm of the n X n GCD matrix.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
FORMULA
Sum_{k=1..n} phi(k)*(floor(n/k))^2. - Vladeta Jovovic, Nov 10 2002
a(n) ~ kn^2 log n, with k = 6/Pi^2. - Charles R Greathouse IV, Jun 21 2013
G.f.: Sum_{k >= 1} phi(k)*x^k*(1+x^k)/((1-x^k)^2*(1-x)). - Robert Israel, Jan 14 2015
MAPLE
N:= 1000 # to get a(1) to a(N)
g:= add(numtheory:-phi(k)*x^k*(1+x^k)/((1-x^k)^2*(1-x)), k=1..N):
S:= series(g, x, N+1):
seq(coeff(S, x, j), j=1..N); # Robert Israel, Jan 14 2015
MATHEMATICA
Table[nn = n; Total[Level[Table[Table[GCD[i, j], {i, 1, nn}], {j, 1, nn}], {2}]], {n, 1, 48}] (* Geoffrey Critzer, Jan 14 2015 *)
PROG
(PARI) a(n)=2*sum(i=1, n, sum(j=1, i-1, gcd(i, j)))+n*(n+1)/2 \\ Charles R Greathouse IV, Jun 21 2013
(PARI) a(n)=sum(k=1, n, eulerphi(k)*(n\k)^2) \\ Charles R Greathouse IV, Jun 21 2013
(Python)
from sympy import totient
def A018806(n): return sum(totient(k)*(n//k)**2 for k in range(1, n+1)) # Chai Wah Wu, Aug 05 2024
CROSSREFS
KEYWORD
nonn
STATUS
approved