login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A064951
a(n) = Sum_{1 <= x, y <= n} lcm(x, y).
3
1, 7, 28, 72, 177, 303, 604, 948, 1497, 2127, 3348, 4272, 6313, 8119, 10324, 13060, 17701, 20995, 27512, 32132, 38453, 45779, 57440, 64664, 77689, 89935, 104704, 117948, 141525, 154755, 183616, 205472, 231113, 258959, 290564, 314720, 364041
OFFSET
1,2
COMMENTS
a(n) is also the entrywise 1-norm of the n X n LCM matrix.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harry J. Smith)
FORMULA
a(n) = a(n-1) + 2*A051193(n) - n = a(n-1) + n*A057660(n) = Sum_{1 <= i <= j <= n} (j^2/gcd(i, j)). - Henry Bottomley, Oct 29 2001
a(n) ~ 3 * zeta(3) * n^4 / (2*Pi^2). - Vaclav Kotesovec, May 29 2021
MATHEMATICA
Table[nn = n; Total[Level[Table[Table[LCM[i, j], {i, 1, nn}], {j, 1, nn}], {2}]], {n, 1, 37}] (* Geoffrey Critzer, Jan 14 2015 *)
PROG
(PARI) { a=0; for (n=1, 1000, a+=n*sum(k=1, n, n/gcd(n, k)); write("b064951.txt", n, " ", a) ) } \\ Harry J. Smith, Oct 01 2009
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Oct 28 2001
STATUS
approved