login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A064948
a(n) = Sum_{i|n, j|n} max(i,j).
1
1, 7, 10, 27, 16, 64, 22, 83, 55, 102, 34, 236, 40, 140, 140, 227, 52, 343, 58, 372, 192, 216, 70, 708, 141, 254, 244, 510, 88, 866, 94, 579, 296, 330, 296, 1241, 112, 368, 348, 1104, 124, 1184, 130, 786, 728, 444, 142, 1908, 267, 877, 452, 924, 160, 1504, 456
OFFSET
1,2
LINKS
FORMULA
a(n) = Sum_{i=1..tau(n)} (2*i-1)*d_i, where {d_i}, i=1..tau(n), is the increasing sequence of the divisors of n.
a(n) = 2*A064944(n) - A000203(n). - Amiram Eldar, Dec 23 2024
EXAMPLE
a(6) = dot_product(1,3,5,7)*(1,2,3,6) = 1*1 + 3*2 + 5*3 + 7*6 = 64.
MAPLE
with(numtheory): seq(add((2*i-1)*sort(convert(divisors(n), 'list'))[i], i=1..tau(n)), n=1..200);
PROG
(PARI) { for (n=1, 1000, d=divisors(n); a=sum(i=1, length(d), (2*i - 1)*d[i]); write("b064948.txt", n, " ", a) ) } \\ Harry J. Smith, Oct 01 2009
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Vladeta Jovovic, Oct 28 2001
STATUS
approved