login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A090497
Smallest prime p such that the concatenation 2,3,5,7, ... (primes) ... p is a multiple of prime(n).
1
2, 29, 5, 11, 17, 61, 31, 271, 3, 13, 107, 1051, 439, 211, 5, 1153, 149, 23, 37, 173, 593, 173, 281, 347, 191, 433, 2083, 109, 389, 1453, 277, 383, 227, 443, 1879, 11, 233, 353, 191, 1723, 547, 241, 397, 181, 199, 7549, 79, 11, 547, 877, 313, 1213, 409, 79, 2969
OFFSET
1,1
LINKS
EXAMPLE
a(4) = 11 and 235711 is a multiple of prime(4) = 7.
MAPLE
N:= 100: # for a(1)..a(N)
P:= [seq(ithprime(i), i=1..N)]:
R:= Vector(N): count:= 0:
p:= 1: s:= 0:
while count < N do
p:= nextprime(p);
s:= 10^(1+ilog10(p))*s+p;
r:= select(t -> R[t]=0 and s mod P[t] = 0, [$1..N]);
R[r]:= p;
count:= count+nops(r);
od:
convert(R, list); # Robert Israel, Oct 28 2021
MATHEMATICA
f[n_] := Block[{p = Prime[n], k = 1, q = 2}, While[ Mod[q, p] != 0, k++; q = FromDigits[ Join[ IntegerDigits[q], IntegerDigits[ Prime[k]]]]]; Prime[k]]; Table[ f[n], {n, 1, 55}]
PROG
(Python)
from sympy import prime, nextprime
def a(n):
pstr, pn, p = "2", prime(n), 2
while int(pstr)%pn != 0:
p = nextprime(p)
pstr += str(p)
return p
print([a(n) for n in range(1, 56)]) # Michael S. Branicky, Oct 28 2021
CROSSREFS
Sequence in context: A080266 A308757 A180423 * A128371 A175932 A370322
KEYWORD
nonn,base
AUTHOR
Amarnath Murthy, Dec 03 2003
EXTENSIONS
Corrected and extended by Robert G. Wilson v, Dec 05 2003
STATUS
approved