The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A238619 Number of partitions of n having population standard deviation > 1. 8
0, 0, 0, 0, 1, 2, 5, 8, 15, 22, 33, 47, 68, 93, 132, 176, 239, 314, 412, 536, 693, 884, 1131, 1427, 1803, 2249, 2808, 3489, 4321, 5325, 6552, 8022, 9799, 11913, 14456, 17502, 21136, 25457, 30588, 36673, 43869, 52398, 62437, 74277, 88186, 104526, 123670, 146028 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,6
COMMENTS
Regarding "standard deviation" see Comments at A238616.
LINKS
FORMULA
a(n) + A238617(n) = A000041(n).
EXAMPLE
There are 11 partitions of 6, whose standard deviations are given by these approximations: 0., 2., 1., 1.41421, 0., 0.816497, 0.866025, 0., 0.5, 0.4, 0, so that a(6) = 2.
MAPLE
b:= proc(n, i, m, s, c) `if`(n=0, `if`(s/c-(m/c)^2>1, 1, 0),
`if`(i=1, b(0$2, m+n, s+n, c+n), add(b(n-i*j, i-1,
m+i*j, s+i^2*j, c+j), j=0..n/i)))
end:
a:= n-> b(n$2, 0$3):
seq(a(n), n=1..50); # Alois P. Heinz, Mar 11 2014
MATHEMATICA
z = 55; g[n_] := g[n] = IntegerPartitions[n]; s[t_] := s[t] = Sqrt[Sum[(t[[k]] - Mean[t])^2, {k, 1, Length[t]}]/Length[t]]
Table[Count[g[n], p_ /; s[p] < 1], {n, z}] (*A238616*)
Table[Count[g[n], p_ /; s[p] <= 1], {n, z}] (*A238617*)
Table[Count[g[n], p_ /; s[p] == 1], {n, z}] (*A238618*)
Table[Count[g[n], p_ /; s[p] > 1], {n, z}] (*A238619*)
Table[Count[g[n], p_ /; s[p] >= 1], {n, z}] (*A238620*)
t[n_] := t[n] = N[Table[s[g[n][[k]]], {k, 1, PartitionsP[n]}]]
ListPlot[Sort[t[30]]] (*plot of st.dev's of partitions of 30*)
(* Second program: *)
b[n_, i_, m_, s_, c_] := b[n, i, m, s, c] = If[n == 0,
If[s/c - (m/c)^2 > 1, 1, 0], If[i == 1, b[0, 0, m+n, s+n, c+n],
Sum[b[n - i*j, i - 1, m + i*j, s + i^2*j, c+j], {j, 0, n/i}]]];
a[n_] := b[n, n, 0, 0, 0];
Array[a, 50] (* Jean-François Alcover, Jun 03 2021, after Alois P. Heinz *)
CROSSREFS
Cf. A238616.
Sequence in context: A183409 A262867 A024808 * A323285 A077866 A098894
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Mar 01 2014
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 16 11:09 EDT 2024. Contains 373429 sequences. (Running on oeis4.)