Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #53 Feb 20 2023 07:51:30
%S 0,1,1,3,2,7,5,12,13,22,22,43,43,67,81,117,133,195,223,312,373,492,
%T 584,782,925,1190,1433,1820,2170,2748,3268,4075,4872,5997,7150,8781,
%U 10420,12669,15055,18198,21535,25925,30602,36624,43201,51428,60478,71802,84215
%N Total number of smallest parts in all partitions of n that do not contain 1 as a part.
%C Total number of smallest parts in all partitions of the head of the last section of the set of partitions of n.
%H Alois P. Heinz, <a href="/A195820/b195820.txt">Table of n, a(n) for n = 1..1000</a>
%H G. E. Andrews, <a href="https://web.archive.org/web/20171111124217/http://www.math.psu.edu/vstein/alg/antheory/preprint/andrews/17.pdf">The number of smallest parts in the partitions of n</a>
%H A. Folsom and K. Ono, <a href="https://web.archive.org/web/20130602180858/http://www.math.wisc.edu/~ono/reprints/111.pdf">The spt-function of Andrews</a>
%H F. G. Garvan, <a href="http://arxiv.org/abs/1011.1957">Congruences for Andrews' spt-function modulo 32760 and extension of Atkin's Hecke-type partition congruences</a>, arXiv:1011.1957 [math.NT], 2020.
%H F. G. Garvan, <a href="https://arxiv.org/abs/1011.1955">Congruences for Andrews' spt-function modulo powers of 5, 7 and 13</a>, arXiv:1011.1955 [math.NT], 2010.
%H K. Ono, <a href="https://web.archive.org/web/20190304031914/http://www.mathcs.emory.edu/~ono/publications-cv/pdfs/131.pdf">Congruences for the Andrews spt-function</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Spt_function">Spt function</a>
%F a(n) = A092269(n) - A000070(n-1).
%F G.f.: Sum_{i>=2} x^i/(1 - x^i) * Product_{j>=i} 1/(1 - x^j). - _Ilya Gutkovskiy_, Apr 03 2017
%F a(n) ~ exp(Pi*sqrt(2*n/3)) / (8*sqrt(3)*n) * (1 - (72 + 5*Pi^2)*sqrt(6) / (144*Pi*sqrt(n))). - _Vaclav Kotesovec_, Jul 31 2017
%e For n = 8 the seven partitions of 8 that do not contain 1 as a part are:
%e . (8)
%e . (4) + (4)
%e . 5 + (3)
%e . 6 + (2)
%e . 3 + 3 + (2)
%e . 4 + (2) + (2)
%e . (2) + (2) + (2) + (2)
%e Note that in every partition the smallest parts are shown between parentheses. The total number of smallest parts is 1+2+1+1+1+2+4 = 12, so a(8) = 12.
%p b:= proc(n, i) option remember;
%p `if`(n=0 or i<2, 0, b(n, i-1)+
%p add(`if`(n=i*j, j, b(n-i*j, i-1)), j=1..n/i))
%p end:
%p a:= n-> b(n, n):
%p seq(a(n), n=1..60); # _Alois P. Heinz_, Apr 09 2012
%t Table[s = Select[IntegerPartitions[n], ! MemberQ[#, 1] &]; Plus @@ Table[Count[x, Min[x]], {x, s}], {n, 50}] (* _T. D. Noe_, Oct 19 2011 *)
%t b[n_, i_] := b[n, i] = If[n==0 || i<2, 0, b[n, i-1] + Sum[If[n== i*j, j, b[n-i*j, i-1]], {j, 1, n/i}]]; a[n_] := b[n, n]; Table[a[n], {n, 1, 60}] (* _Jean-François Alcover_, Oct 12 2015, after _Alois P. Heinz_ *)
%o (Sage)
%o def A195820(n):
%o return sum(list(p).count(min(p)) for p in Partitions(n,min_part=2))
%o # _D. S. McNeil_, Oct 19 2011
%Y Cf. A000041, A000070, A002865, A092269, A135010, A138121, A138135, A138137, A182984.
%K nonn
%O 1,4
%A _Omar E. Pol_, Oct 19 2011
%E More terms from _D. S. McNeil_, Oct 19 2011