login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A040610 Continued fraction for sqrt(636). 0
25, 4, 1, 1, 3, 3, 12, 3, 3, 1, 1, 4, 50, 4, 1, 1, 3, 3, 12, 3, 3, 1, 1, 4, 50, 4, 1, 1, 3, 3, 12, 3, 3, 1, 1, 4, 50, 4, 1, 1, 3, 3, 12, 3, 3, 1, 1, 4, 50, 4, 1, 1, 3, 3, 12, 3, 3, 1, 1, 4, 50, 4, 1, 1, 3, 3, 12, 3, 3, 1, 1, 4, 50, 4, 1, 1, 3, 3, 12, 3, 3, 1, 1, 4, 50, 4, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Table of n, a(n) for n=0..86.

Index entries for continued fractions for constants

Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).

FORMULA

a(n)=(1/396)*{-1475*(n mod 12)-46*[(n+1) mod 12]+43*[(n+2) mod 12]+109*[(n+3) mod 12]+43*[(n+4) mod 12]+340*[(n+5) mod 12]-254*[(n+6) mod 12]+43*[(n+7) mod 12]-23*[(n+8) mod 12]+43*[(n+9) mod 12]+142*[(n+10) mod 12]+1561*[(n+11) mod 12]}-25*[C(2*n,n) mod 2], with n>=0 [From Paolo P. Lava, May 15 2009]

MAPLE

with(numtheory): Digits := 300: convert(evalf(sqrt(636)), confrac);

MATHEMATICA

ContinuedFraction[Sqrt[636], 90] (* Harvey P. Dale, Oct 24 2011 *)

CROSSREFS

Sequence in context: A040614 A040615 A317325 * A158786 A040611 A236176

Adjacent sequences:  A040607 A040608 A040609 * A040611 A040612 A040613

KEYWORD

nonn,cofr,easy

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 08:41 EST 2021. Contains 349627 sequences. (Running on oeis4.)