login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Multiples of 25 and odd numbers interleaved.
4

%I #34 Dec 11 2024 06:29:00

%S 0,1,25,3,50,5,75,7,100,9,125,11,150,13,175,15,200,17,225,19,250,21,

%T 275,23,300,25,325,27,350,29,375,31,400,33,425,35,450,37,475,39,500,

%U 41,525,43,550,45,575,47,600,49,625,51,650,53,675,55,700,57,725,59,750,61,775,63,800,65,825,67,850,69

%N Multiples of 25 and odd numbers interleaved.

%C Partial sums give the generalized 29-gonal numbers (A303815).

%C a(n) is also the length of the n-th line segment of the rectangular spiral whose vertices are the generalized 29-gonal numbers.

%H Colin Barker, <a href="/A317325/b317325.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,2,0,-1).

%F a(2n) = 25*n, a(2n+1) = 2*n + 1.

%F G.f.: x*(1 + 25*x + x^2)/((1 - x)^2*(1 + x)^2). - _Vincenzo Librandi_, Jul 28 2018

%F a(n) = 2*a(n-2) - a(n-4) for n>3. - _Colin Barker_, Jul 29 2018

%F Multiplicative with a(2^e) = 25*2^(e-1), and a(p^e) = p^e for an odd prime p. - _Amiram Eldar_, Oct 14 2023

%F Dirichlet g.f.: zeta(s-1) * (1 + 23/2^s). - _Amiram Eldar_, Oct 26 2023

%p seq(op([25*n,2*n+1]),n=0..40); # _Muniru A Asiru_, Jul 28 2018

%t With[{nn=30}, Riffle[25 Range[0, nn], 2 Range[0, nn] + 1]] (* _Vincenzo Librandi_, Jul 28 2018 *)

%o (Magma) &cat[[25*n, 2*n + 1]: n in [0..30]]; // _Vincenzo Librandi_, Jul 28 2018

%o (GAP) Flat(List([0..40],n->[25*n,2*n+1])); # _Muniru A Asiru_, Jul 28 2018

%o (PARI) concat(0, Vec(x*(1 + 25*x + x^2) / ((1 - x)^2*(1 + x)^2) + O(x^60))) \\ _Colin Barker_, Jul 29 2018

%Y Cf. A008607 and A005408 interleaved.

%Y Column 25 of A195151.

%Y Sequences whose partial sums give the generalized k-gonal numbers: A026741 (k=5), A001477 (k=6), zero together with A080512 (k=7), A022998 (k=8), A195140 (k=9), zero together with A165998 (k=10), A195159 (k=11), A195161 (k=12), A195312 (k=13), A195817 (k=14).

%Y Cf. A303815.

%K nonn,easy,mult,changed

%O 0,3

%A _Omar E. Pol_, Jul 25 2018