OFFSET
1,1
COMMENTS
Theorem: A number m > 161 is a member if and only if it is a product p*(p+6) such that both p and p+6 are primes (A023201). The proof is similar to that of Theorem 1 in the Shevelev link. - Vladimir Shevelev, Feb 23 2016
LINKS
Robert Price, Table of n, a(n) for n = 1..353
R. J. Mathar, Corrigendum to "On the divisibility of...", arXiv:1109.0922 [math.NT], 2011.
V. Shevelev, On divisibility of binomial(n-i-1,i-1) by i, Intl. J. of Number Theory 3, no.1 (2007), 119-139.
FORMULA
{n: A178101(n) = 2}.
MATHEMATICA
Select[Range@ 4000, Function[n, Count[Range[n/2], k_ /; And[! CoprimeQ[n, k], Divisible[Binomial[n - k - 1, k - 1], k]]] == 2]] (* Michael De Vlieger, Feb 17 2016 *)
PROG
(PARI) isok(n)=my(nb = 0); for (d=2, n\2, if ((gcd(d, n) != 1) && ((binomial(n-d-1, d-1) % d) == 0), nb++); if (nb > 2, return (0)); ); nb == 2; \\ Michel Marcus, Feb 17 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, May 20 2010
EXTENSIONS
91 inserted by R. J. Mathar, May 28 2010
a(18)-a(36) from Michel Marcus, Feb 17 2016
a(37)-a(44) (based on theorem from Vladimir Shevelev in Comments) from Robert Price, May 14 2019
STATUS
approved