login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178099
Numbers k such that exactly three d in the range d <= k/2 exist which divide binomial(k-d-1,d-1) and which are not coprime to k.
7
32, 38, 45, 51, 52, 56, 57, 63, 69, 87, 145, 209, 713, 1073, 3233, 3953, 5609, 8633, 11009, 18209, 23393, 31313, 38009, 56153, 71273, 74513, 131753, 154433, 164009, 189209, 205193, 233273, 245009, 321473, 328313, 356393, 363593, 431633, 471953, 497009
OFFSET
1,1
COMMENTS
Theorem: A number m > 145 is a member if and only if it is a product p*(p+8) such that both p and p+8 are primes (A023202).
The proof is similar to that of Theorem 1 in the Shevelev link. - Vladimir Shevelev, Feb 23 2016
LINKS
R. J. Mathar, Corrigendum to "On the divisibility...", arxiv:1109.0922 [math.NT], 2011.
Vladimir Shevelev, On divisibility of binomial(n-i-1,i-1) by i, Intl. J. of Number Theory, 3, no.1 (2007), 119-139.
FORMULA
{k: A178101(k) = 3}.
MAPLE
A178099 := proc(n) local dvs, d ; dvs := {} ; for d from 1 to n/2 do if gcd(n, d) > 1 and d in numtheory[divisors]( binomial(n-d-1, d-1)) then dvs := dvs union {d} ; end if; end do: if nops(dvs) = 3 then printf("%d, \n", n); end if; end proc:
for n from 1 do A178099(n) end do; # R. J. Mathar, May 28 2010
MATHEMATICA
Select[Range[4000], Function[n, Count[Range[n/2], k_ /; And[! CoprimeQ[n, k], Divisible[Binomial[n - k - 1, k - 1], k]]] == 3]] (* Michael De Vlieger, Feb 17 2016 *)
PROG
(PARI) isok(n) = sum(d=2, n\2, (gcd(d, n) != 1) && ((binomial(n-d-1, d-1) % d) == 0)) == 3; \\ Michel Marcus, Feb 17 2016
(PARI) isok(n) = {my(nb = 0); for (d=2, n\2, if ((gcd(d, n) != 1) && ((binomial(n-d-1, d-1) % d) == 0), nb++); if (nb > 3, return (0)); ); nb == 3; } \\ Michel Marcus, Feb 17 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, May 20 2010
EXTENSIONS
Definition corrected, 54 and 91 removed by R. J. Mathar, May 28 2010
a(11)-a(23) from Michel Marcus, Feb 17 2016
a(24)-a(40) from Shevelev Theorem in Comments by Robert Price, May 14 2019
STATUS
approved