OFFSET
0,3
COMMENTS
Note that in the sequences of generalized k-gonal numbers always a(3) = k. In this case k = 30.
Generalized k-gonal numbers are second k-gonal numbers and positive terms of k-gonal numbers interleaved, with k >= 5.
A general formula for the generalized k-gonal numbers is given by m*((k-2)*m-k+4)/2, with m = 0, +1, -1, +2, -2, +3, -3, ..., k >= 5.
Every sequence of generalized k-gonal numbers can be represented as vertices of a rectangular spiral constructed with line segments on the square grid, with k >= 5.
56*a(n) + 169 is a square. - Vincenzo Librandi, Jul 12 2018
Generalized k-gonal numbers are the partial sums of the sequence formed by the multiples of (k - 4) and the odd numbers (A005408) interleaved, with k >= 5. - Omar E. Pol, Jul 27 2018
Also partial sums of A317326. - Omar E. Pol, Jul 28 2018
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
FORMULA
G.f.: x*(1 + 26*x + x^2)/((1 + x)^2*(1 - x)^3). - Vincenzo Librandi, Jul 12 2018
From Amiram Eldar, Mar 01 2022: (Start)
a(n) = (28*n*(n + 1) + 12*(2*n + 1)*(-1)^n - 12)/8.
a(n) = n*(7*n + 13)/2, if n is even, or (n + 1)*(7*n - 6)/2 otherwise.
Sum_{n>=1} 1/a(n) = 14/169 + Pi*cot(Pi/14)/13. (End)
MATHEMATICA
CoefficientList[Series[x (1 + 26 x + x^2)/((1 + x)^2 (1 - x)^3), {x, 0, 55}], x] (* Vincenzo Librandi, Jul 12 2018 *)
LinearRecurrence[{1, 2, -2, -1, 1}, {0, 1, 27, 30, 82}, 47] (* Robert G. Wilson v, Jul 28 2018 *)
PROG
(PARI) concat(0, Vec(x*(1 + 26*x + x^2)/((1 + x)^2*(1 - x)^3) + O(x^40))) \\ Colin Barker, Jul 16 2018
CROSSREFS
Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), this sequence (k=30).
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Jul 11 2018
EXTENSIONS
Duplicated term (1551) deleted by Colin Barker, Jul 16 2018
STATUS
approved