login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A316730
Number of permutations of {0,1,...,2n+2} with first element n whose sequence of ascents and descents forms a Dyck path.
2
1, 7, 121, 4411, 283073, 28318137, 4076415425, 798519164779, 204292676593353, 66150225395814649, 26444888796754193841, 12792566645739144488693, 7364969554345555373419625, 4976538708651698959601499559, 3900052284443403730374391636689
OFFSET
0,2
COMMENTS
All terms are odd.
LINKS
FORMULA
a(n) = A316728(n+1,n).
a(n) ~ c * 4^n * (n!)^2, where c = 1.897642067924382577976619913635026612792069869805703855808680498665... - Vaclav Kotesovec, Jul 15 2018
EXAMPLE
a(0) = 1: 021.
a(1) = 7: 12043, 12430, 13042, 13240, 13420, 14032, 14230.
a(2) = 121: 2301654, 2304165, 2304651, 2305164, ..., 2635041, 2635140, 2645031, 2645130.
MAPLE
b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
`if`(t>0, add(b(u-j, o+j-1, t-1), j=1..u), 0)+
`if`(o+u>t, add(b(u+j-1, o-j, t+1), j=1..o), 0))
end:
a:= n-> b(n, n+2, 0):
seq(a(n), n=0..20);
MATHEMATICA
b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1,
If[t > 0, Sum[b[u - j, o + j - 1, t - 1], {j, 1, u}], 0] +
If[o + u > t, Sum[b[u + j - 1, o - j, t + 1], {j, 1, o}], 0]];
a[n_] := b[n, n+2, 0];
a /@ Range[0, 20] (* Jean-François Alcover, Mar 27 2021, after Alois P. Heinz *)
CROSSREFS
Cf. A316728.
Sequence in context: A279235 A094088 A012043 * A211103 A012103 A012086
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 11 2018
STATUS
approved