login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A012103
cos(arcsin(sinh(x))) = 1-1/2!*x^2-7/4!*x^4-121/6!*x^6-5167/8!*x^8...
0
1, -1, -7, -121, -5167, -410641, -51771127, -9466034761, -2365187249887, -773771636088481, -320901749327353447, -164490143309272987801, -102106049239499080993807, -75475990780239097513548721
OFFSET
0,3
FORMULA
For n>0, a(n) = Sum_{k=1..n} Sum_{j=0..k-1} Pochhammer(-1/2,k) * binomial(2k,j)*(-1)^j*2^(1+2n-2k)*(j-k)^(2n)/k!. - Benedict W. J. Irwin, May 25 2017
MATHEMATICA
With[{nn=30}, Take[CoefficientList[Series[Cos[ArcSin[Sinh[x]]], {x, 0, nn}], x] Range[0, nn]!, {1, -1, 2}]] (* Harvey P. Dale, Sep 07 2015 *)
MaxVal = 13; Join[{1}, Table[ Sum[Pochhammer[-(1/2), k] Binomial[2 k, j] (-1)^(j) 2^(1 + 2 i - 2 k) (j - k)^(2 i)/k!, {k, 1, MaxVal}, {j, 0, k - 1}], {i, 1, MaxVal}]] (* Benedict W. J. Irwin, May 25 2017 *)
CROSSREFS
Sequence in context: A012043 A316730 A211103 * A012086 A074487 A192566
KEYWORD
sign
AUTHOR
Patrick Demichel (patrick.demichel(AT)hp.com)
STATUS
approved