login
A012103
cos(arcsin(sinh(x))) = 1-1/2!*x^2-7/4!*x^4-121/6!*x^6-5167/8!*x^8...
0
1, -1, -7, -121, -5167, -410641, -51771127, -9466034761, -2365187249887, -773771636088481, -320901749327353447, -164490143309272987801, -102106049239499080993807, -75475990780239097513548721
OFFSET
0,3
FORMULA
For n>0, a(n) = Sum_{k=1..n} Sum_{j=0..k-1} Pochhammer(-1/2,k) * binomial(2k,j)*(-1)^j*2^(1+2n-2k)*(j-k)^(2n)/k!. - Benedict W. J. Irwin, May 25 2017
MATHEMATICA
With[{nn=30}, Take[CoefficientList[Series[Cos[ArcSin[Sinh[x]]], {x, 0, nn}], x] Range[0, nn]!, {1, -1, 2}]] (* Harvey P. Dale, Sep 07 2015 *)
MaxVal = 13; Join[{1}, Table[ Sum[Pochhammer[-(1/2), k] Binomial[2 k, j] (-1)^(j) 2^(1 + 2 i - 2 k) (j - k)^(2 i)/k!, {k, 1, MaxVal}, {j, 0, k - 1}], {i, 1, MaxVal}]] (* Benedict W. J. Irwin, May 25 2017 *)
CROSSREFS
Sequence in context: A012043 A316730 A211103 * A012086 A074487 A192566
KEYWORD
sign
AUTHOR
Patrick Demichel (patrick.demichel(AT)hp.com)
STATUS
approved