|
|
A074487
|
|
a(1)=1, then "jump over next square": a(n) = 2*(a(n-1)+1)^2-a(n-1).
|
|
1
|
|
|
1, 7, 121, 29647, 1757978161, 6180974434379818327, 76408889916913830205838054898189612841, 11676636916670111980512852400247542904848802859324947344926081051625513021087
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
The rule "jump over next something" can be varied, see A075694, A075695.
|
|
LINKS
|
|
|
FORMULA
|
a(1)=1, a(n) = 2*(a(n-1)+1)^2 - a(n-1).
|
|
EXAMPLE
|
a(1)=1; next square is (a(1)+1)^2=4; "jump over" it: 4+(4-1)=7; a(2)=7; next square is (a(2)+1)^2=64; "jump over" it: 64+(64-7)=121.
|
|
MAPLE
|
a(1) := 1; a(n) := 2*(a(n-1)+1)^2-a(n-1);
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|