|
|
A192566
|
|
a(n) = abs(stirling1(n,k))*stirling2(n+1,k+1)*k!^2,k=0..n).
|
|
0
|
|
|
1, 1, 7, 122, 3926, 201444, 15081256, 1551423600, 209964727584, 36170279518320, 7728442094221344, 2005825817037374496, 621563279659462241856, 226678766174046141016320, 96106307573596013377908480, 46874174201481263768233403904
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
Table of n, a(n) for n=0..15.
|
|
FORMULA
|
a(n) ~ c * LambertW(-1, -r*exp(-r))^n * n!^2 / (sqrt(n) * LambertW(-exp(-1/r)/r)^n), where r = 0.673313285145753168... is the root of the equation (1 + 1/(r*LambertW(-exp(-1/r)/r))) * (r + LambertW(-1, -r*exp(-r))) = 1 and c = 0.63319930751748217157127596837987799731063242340102342707708047131... - Vaclav Kotesovec, Jul 05 2021
|
|
MATHEMATICA
|
Table[Sum[Abs[StirlingS1[n, k]]StirlingS2[n+1, k+1]k!^2, {k, 0, n}], {n, 0, 100}]
|
|
PROG
|
(Maxima) makelist(sum(abs(stirling1(n, k))*stirling2(n+1, k+1)*k!^2, k, 0, n), n, 0, 24);
|
|
CROSSREFS
|
Sequence in context: A012103 A012086 A074487 * A322090 A360337 A304420
Adjacent sequences: A192563 A192564 A192565 * A192567 A192568 A192569
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Emanuele Munarini, Jul 04 2011
|
|
STATUS
|
approved
|
|
|
|