OFFSET
0,3
FORMULA
a(n) ~ c * LambertW(-1, -r*exp(-r))^n * n!^2 / (sqrt(n) * LambertW(-exp(-1/r)/r)^n), where r = 0.673313285145753168... is the root of the equation (1 + 1/(r*LambertW(-exp(-1/r)/r))) * (r + LambertW(-1, -r*exp(-r))) = 1 and c = 0.5694875599509546909505843910919946016728003129830561427442509356... - Vaclav Kotesovec, Jul 05 2021
MATHEMATICA
Table[Sum[Abs[StirlingS1[n+1, k+1]]StirlingS2[n, k]k!^2, {k, 0, n}], {n, 0, 100}]
PROG
(Maxima) makelist(sum(abs(stirling1(n+1, k+1))*stirling2(n, k)*k!^2, k, 0, n), n, 0, 24);
CROSSREFS
KEYWORD
nonn
AUTHOR
Emanuele Munarini, Jul 04 2011
STATUS
approved