login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192567
a(n) = sum(abs(stirling1(n+1,k+1))*stirling2(n+1,k+1)*k!^2,k=0..n).
0
1, 2, 15, 263, 8450, 432514, 32308948, 3317537208, 448304831744, 77131843774416, 16463316260454624, 4269057157148962320, 1321883141629335120576, 481761671427370573812000, 204137795884403682574690176, 99514256070766872294586292544
OFFSET
0,2
FORMULA
a(n) ~ c * LambertW(-1, -r*exp(-r))^n * n!^2 / (sqrt(n) * LambertW(-exp(-1/r)/r)^n), where r = 0.673313285145753168... is the root of the equation (1 + 1/(r*LambertW(-exp(-1/r)/r))) * (r + LambertW(-1, -r*exp(-r))) = 1 and c = 1.333855551736054319768931910172827342915539397625400733803588773... - Vaclav Kotesovec, Jul 05 2021
MATHEMATICA
Table[Sum[Abs[StirlingS1[n+1, k+1]]StirlingS2[n+1, k+1]k!^2, {k, 0, n}], {n, 0, 100}]
PROG
(Maxima) makelist(sum(abs(stirling1(n+1, k+1))*stirling2(n+1, k+1)*k!^2, k, 0, n), n, 0, 24);
CROSSREFS
Sequence in context: A102555 A264907 A195737 * A354980 A143886 A174482
KEYWORD
nonn
AUTHOR
Emanuele Munarini, Jul 04 2011
STATUS
approved