login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A195737
E.g.f.: x = Sum_{n>=1} a(n)*x^n/n! * exp(-n*(n+1)/2*x).
3
1, 2, 15, 256, 7935, 392526, 28498246, 2863702080, 381411964485, 65129544696250, 13888321460879976, 3620285828450155008, 1133432920326577483795, 419923892646668363653350, 181795302703808044653240000, 90971411268941227901619966976
OFFSET
1,2
COMMENTS
Compare e.g.f. to: x = Sum_{n>=1} n^(n-1)*x^n/n! * exp(-n*x), which generates coefficients for the series reversion of x*exp(-x).
LINKS
FORMULA
G.f.: x = Sum_{n>=1} a(n)*x^n/(n*(1 + n*(n+1)/2*x)^n).
EXAMPLE
x = x*exp(-x) + 2*x^2/2!*exp(-3*x) + 15*x^3/3!*exp(-6*x) + 256*x^4/4!*exp(-10*x) + 7935*x^5/5!*exp(-15*x) +...+ a(n)*x^n/n!*exp(-n*(n+1)/2*x) +...
The coefficients a(n) also satisfy:
x = x/(1+x) + 2*x^2/(2*(1+3*x)^2) + 15*x^3/(3*(1+6*x)^3) + 256*x^4/(4*(1+10*x)^4) + 7935*x^5/(5*(1+15*x)^5) +...+ a(n)*x^n/(n*(1+n*(n+1)/2*x)^n) +...
PROG
(PARI) {a(n)=if(n<1, 0, n!*polcoeff(x-sum(m=1, n-1, a(m)*x^m/m!*exp(-m*(m+1)/2*x+x*O(x^n))), n))}
(PARI) {a(n)=if(n<1, 0, n*polcoeff(x-sum(m=1, n-1, a(m)*x^m/(m*(1+m*(m+1)/2*x+x*O(x^n))^m)), n))}
CROSSREFS
Sequence in context: A203310 A102555 A264907 * A192567 A354980 A143886
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 30 2011
STATUS
approved