OFFSET
1,2
COMMENTS
Compare e.g.f. to: x = Sum_{n>=1} n^(n-1)*x^n/n! * exp(-n*x), which generates coefficients for the series reversion of x*exp(-x).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..200
FORMULA
G.f.: x = Sum_{n>=1} a(n)*x^n/(n*(1 + n*(n+1)/2*x)^n).
EXAMPLE
x = x*exp(-x) + 2*x^2/2!*exp(-3*x) + 15*x^3/3!*exp(-6*x) + 256*x^4/4!*exp(-10*x) + 7935*x^5/5!*exp(-15*x) +...+ a(n)*x^n/n!*exp(-n*(n+1)/2*x) +...
The coefficients a(n) also satisfy:
x = x/(1+x) + 2*x^2/(2*(1+3*x)^2) + 15*x^3/(3*(1+6*x)^3) + 256*x^4/(4*(1+10*x)^4) + 7935*x^5/(5*(1+15*x)^5) +...+ a(n)*x^n/(n*(1+n*(n+1)/2*x)^n) +...
PROG
(PARI) {a(n)=if(n<1, 0, n!*polcoeff(x-sum(m=1, n-1, a(m)*x^m/m!*exp(-m*(m+1)/2*x+x*O(x^n))), n))}
(PARI) {a(n)=if(n<1, 0, n*polcoeff(x-sum(m=1, n-1, a(m)*x^m/(m*(1+m*(m+1)/2*x+x*O(x^n))^m)), n))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 30 2011
STATUS
approved