login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174482
a(n) = coefficient of x^n/(n-1)! in the n-th iteration of x*exp(x) for n>=1.
6
1, 2, 15, 274, 9425, 527631, 43806175, 5060694920, 776717906529, 152926864265845, 37581193509020711, 11276280009364700628, 4057223684795928824281, 1724304353051995724792979
OFFSET
1,2
EXAMPLE
The initial n-th iterations of x*exp(x) begin:
n=1: (1)*x + x^2 + x^3/2! + x^4/3! + x^5/4! + x^6/5! +...
n=2: x +(2)*x^2 + 6*x^3/2! + 23*x^4/3! + 104*x^5/4! + 537*x^6/5! +...
n=3: x + 3*x^2 +(15)*x^3/2! +102*x^4/3! +861*x^5/4! +8598*x^6/5! +...
n=4: x + 4*x^2 +28*x^3/2! +(274)*x^4/3! +3400*x^5/4! +50734*x^6/5! +...
n=5: x + 5*x^2 +45*x^3/2! +575*x^4/3! +(9425)*x^5/4! +187455*x^6/5! +...
n=6: x + 6*x^2 +66*x^3/2! +1041*x^4/3! +21216*x^5/4!+(527631)*x^6/5!+...
This sequence starts with the above coefficients in parathesis.
PROG
(PARI) {a(n)=local(E=x*exp(x+x*O(x^n)), F=x); for(i=1, n, F=subst(F, x, E)); (n-1)!*polcoeff(F, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 09 2010
STATUS
approved