login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174485
Triangle of numerators T(n,k) in the matrix {T(n,k)/(n-k)!,n>=k>=0} that transforms diagonals of the array (A174480) of coefficients in successive iterations of x*exp(x).
5
1, 1, 1, 5, 2, 1, 70, 16, 3, 1, 1973, 308, 33, 4, 1, 94216, 11048, 810, 56, 5, 1, 6851197, 639972, 35325, 1672, 85, 6, 1, 706335064, 54671188, 2408568, 85904, 2990, 120, 7, 1, 98105431657, 6471586298, 236624733, 6741544, 176885, 4860, 161, 8, 1
OFFSET
0,4
EXAMPLE
Triangle T begins:
1;
1,1;
5,2,1;
70,16,3,1;
1973,308,33,4,1;
94216,11048,810,56,5,1;
6851197,639972,35325,1672,85,6,1;
706335064,54671188,2408568,85904,2990,120,7,1;
98105431657,6471586298,236624733,6741544,176885,4860,161,8,1;
17669939141440,1014487323984,31654735416,749040472,15706200,325368,7378,208,9,1;
...
Form a table of coefficients in iterations of x*exp(x), like so:
n=0: [1, 0, 0, 0, 0, 0, 0, ...];
n=1: [1, 1, 1/2!, 1/3!, 1/4!, 1/5!, 1/6!, ...];
n=2: [1, 2, 6/2!, 23/3!, 104/4!, 537/5!, 3100/6!, ...];
n=3: [1, 3, 15/2!, 102/3!, 861/4!, 8598/5!, 98547/6!, ...];
n=4: [1, 4, 28/2!, 274/3!, 3400/4!, 50734/5!, 880312/6!, ...];
n=5: [1, 5, 45/2!, 575/3!, 9425/4!, 187455/5!, 4367245/6!, ...];
n=6: [1, 6, 66/2!, 1041/3!, 21216/4!, 527631/5!+ 15441636/6!, ...];
n=7: [1, 7, 91/2!, 1708/3!, 41629/4!, 1242892/5!, 43806175/6!, ...];
n=8: [1, 8, 120/2!, 2612/3!, 74096/4!, 2582028/5!, 106459312/6!, ...];
...
and form matrix D from this triangle T by: D(n,k) = T(n,k)/(n-k)!,
then matrix D transforms diagonals in the above table as illustrated by:
where the diagonals begin:
A174481: [1, 1, 6/2!, 102/3!, 3400/4!, 187455/5!, ...];
A174482: [1, 2, 15/2!, 274/3!, 9425/4!, 527631/5!, ...];
A174483: [1, 3, 28/2!, 575/3!, 21216/4!, 1242892/5!, ...];
A174484: [1, 4, 45/2!, 1041/3!, 41629/4!, 2582028/5!, ...].
PROG
(PARI) {T(n, k)=local(F=x, xEx=x*exp(x+x*O(x^(n+2))), M, N, P, m=max(n, k)); M=matrix(m+2, m+2, r, c, F=x; for(i=1, r+c-2, F=subst(F, x, xEx)); polcoeff(F, c)); N=matrix(m+1, m+1, r, c, M[r, c]); P=matrix(m+1, m+1, r, c, M[r+1, c]); (n-k)!*(P~*N~^-1)[n+1, k+1]}
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Apr 18 2010
STATUS
approved