login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A316728
Number T(n,k) of permutations of {0,1,...,2n} with first element k whose sequence of ascents and descents forms a Dyck path; triangle T(n,k), n>=0, 0<=k<=2n, read by rows.
6
1, 1, 1, 0, 8, 7, 5, 2, 0, 172, 150, 121, 87, 52, 22, 0, 7296, 6440, 5464, 4411, 3337, 2306, 1380, 604, 0, 518324, 463578, 405024, 344260, 283073, 223333, 166856, 115250, 69772, 31238, 0, 55717312, 50416894, 44928220, 39348036, 33777456, 28318137, 23068057, 18117190, 13543456, 9409366, 5759740, 2620708, 0
OFFSET
0,5
LINKS
FORMULA
Sum_{k=0..2n} T(n,k) = T(n+1,2n+1) = A177042(n).
Sum_{k=0..2n} (k+1) * T(n,k) = A079484(n).
EXAMPLE
T(2,0) = 8: 01432, 02143, 02431, 03142, 03241, 03421, 04132, 04231.
T(2,1) = 7: 12043, 12430, 13042, 13240, 13420, 14032, 14230.
T(2,2) = 5: 23041, 23140, 23410, 24031, 24130.
T(2,3) = 2: 34021, 34120.
T(2,4) = 0.
Triangle T(n,k) begins:
1;
1, 1, 0;
8, 7, 5, 2, 0;
172, 150, 121, 87, 52, 22, 0;
7296, 6440, 5464, 4411, 3337, 2306, 1380, 604, 0;
518324, 463578, 405024, 344260, 283073, 223333, 166856, 115250, 69772, 31238, 0;
MAPLE
b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
`if`(t>0, add(b(u-j, o+j-1, t-1), j=1..u), 0)+
`if`(o+u>t, add(b(u+j-1, o-j, t+1), j=1..o), 0))
end:
T:= (n, k)-> b(k, 2*n-k, 0):
seq(seq(T(n, k), k=0..2*n), n=0..8);
MATHEMATICA
b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1,
If[t > 0, Sum[b[u - j, o + j - 1, t - 1], {j, 1, u}], 0] +
If[o + u > t, Sum[b[u + j - 1, o - j, t + 1], {j, 1, o}], 0]];
T[n_, k_] := b[k, 2n - k, 0];
Table[Table[T[n, k], {k, 0, 2n}], {n, 0, 8}] // Flatten (* Jean-François Alcover, Mar 27 2021, after Alois P. Heinz *)
CROSSREFS
Column k=0 gives A303285.
Row sums and T(n+1,2n+1) give A177042.
T(n,n) gives A316727.
T(n+1,n) gives A316730.
T(n,2n) gives A000007.
Cf. A079484.
Sequence in context: A185346 A378096 A200017 * A231098 A072003 A160668
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, Jul 11 2018
STATUS
approved