|
|
A358592
|
|
Matula-Goebel numbers of rooted trees whose height, number of leaves, and number of internal (non-leaf) nodes are all equal.
|
|
14
|
|
|
18, 21, 60, 70, 78, 91, 92, 95, 102, 111, 119, 122, 129, 146, 151, 181, 201, 227, 264, 269, 308, 348, 376, 406, 418, 426, 452, 492, 497, 519, 551, 562, 574, 583, 596, 606, 659, 664, 668, 698, 707, 708, 717, 779, 794, 796, 809, 826, 834, 911, 932, 934, 942, 958
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.
|
|
LINKS
|
Table of n, a(n) for n=1..54.
Gus Wiseman, The first 64 ordered trees whose height, number of leaves, and number of internal nodes are all equal.
|
|
FORMULA
|
A358552(a(n)) = A342507(a(n)) = A109129(a(n)).
|
|
EXAMPLE
|
The terms together with their corresponding rooted trees begin:
18: (o(o)(o))
21: ((o)(oo))
60: (oo(o)((o)))
70: (o((o))(oo))
78: (o(o)(o(o)))
91: ((oo)(o(o)))
92: (oo((o)(o)))
95: (((o))(ooo))
102: (o(o)((oo)))
111: ((o)(oo(o)))
119: ((oo)((oo)))
122: (o(o(o)(o)))
129: ((o)(o(oo)))
146: (o((o)(oo)))
151: ((oo(o)(o)))
181: ((o(o)(oo)))
201: ((o)((ooo)))
227: (((oo)(oo)))
|
|
MATHEMATICA
|
MGTree[n_]:=If[n==1, {}, MGTree/@Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[100], Count[MGTree[#], _[__], {0, Infinity}]==Count[MGTree[#], {}, {0, Infinity}]==Depth[MGTree[#]]-1&]
|
|
CROSSREFS
|
Any number of leaves: A358576, counted by A358587 (ordered A358588).
Any number of internals: A358577, counted by A358589, ordered A358590.
Any height: A358578, ordered A358579, counted by A185650.
A000081 counts rooted trees, ordered A000108.
A034781 counts rooted trees by nodes and height.
A055277 counts rooted trees by nodes and leaves, ordered A001263.
MG statistics: A061775, A109082, A109129, A196050, A342507, A358552.
Cf. A000040, A000720, A001222, A007097, A056239, A112798.
Cf. A206487, A358580, A358581-A358586.
Sequence in context: A293751 A090891 A303298 * A121851 A154151 A296008
Adjacent sequences: A358589 A358590 A358591 * A358598 A358599 A358600
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Gus Wiseman, Nov 25 2022
|
|
STATUS
|
approved
|
|
|
|