login
A274980
Denominator of the alternating n-th partial sum of the reciprocals of the successive prime gaps.
2
1, 2, 1, 4, 4, 1, 2, 4, 12, 12, 12, 6, 3, 12, 4, 12, 12, 12, 3, 6, 3, 12, 4, 8, 8, 8, 8, 8, 8, 56, 56, 168, 168, 840, 840, 840, 840, 840, 280, 840, 840, 840, 840, 840, 840, 280, 840, 840, 840, 840, 280, 280, 280, 840, 280, 840, 840, 840, 840, 840, 168, 168, 168, 168, 168, 168, 168
OFFSET
1,2
LINKS
FORMULA
a(n) = Denominator(Sum_{i=1..n} ((-1)^(i - 1))/(prime(i+1)-prime(i))).
a(n) = Denominator(Sum_{i=1..n} ((-1)^(i - 1))/A001223(i)).
MAPLE
P:= [seq(ithprime(i), i=1..101)]:
G:= P[2..-1]-P[1..-2]:
R:= ListTools:-PartialSums([seq((-1)^i/G[i], i=1..100)]):
map(denom, R); # Robert Israel, Aug 02 2024
MATHEMATICA
Table[Denominator@Sum[((-1)^(j - 1))/(Prime[j + 1] - Prime[j]), {j, 1, n}], {n, 1, 120}];
CROSSREFS
KEYWORD
nonn,frac,look
AUTHOR
Andres Cicuttin, Jul 14 2016
STATUS
approved