login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182228
a(n) = 3*a(n-2) - a(n-1) for n > 1, a(0) = 0, a(1) = 1.
6
0, 1, -1, 4, -7, 19, -40, 97, -217, 508, -1159, 2683, -6160, 14209, -32689, 75316, -173383, 399331, -919480, 2117473, -4875913, 11228332, -25856071, 59541067, -137109280, 315732481, -727060321, 1674257764, -3855438727, 8878212019, -20444528200, 47079164257, -108412748857
OFFSET
0,4
COMMENTS
This is A006130 with minus signs on every other term. - T. D. Noe, Apr 23 2012
FORMULA
From R. J. Mathar, Apr 22 2013: (Start)
a(n) = -A140167(n).
G.f.: x/(1 + x - 3*x^2). (End)
G.f.: 1 - Q(0), where Q(k) = 1 + 3*x^2 - (k+2)*x + x*(k+1 - 3*x)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 06 2013
E.g.f.: (-1/sqrt(13))*(exp(-(1+sqrt(13))*x/2) - exp(-(1-sqrt(13))*x/2)). - G. C. Greubel, Aug 30 2015
a(n) = (-(-1)^n/sqrt(13))*(((1 + sqrt(13))/2)^n - ((1 - sqrt(13))/2)^n). - Taras Goy, Jul 17 2018
MATHEMATICA
RecurrenceTable[{a[n]== - a[n-1] + 3*a[n-2], a[0]== 0, a[1]== 1}, a, {n, 0, 200}] (* G. C. Greubel, Aug 30 2015 *)
LinearRecurrence[{-1, 3}, {0, 1}, 40] (* Harvey P. Dale, Oct 23 2016 *)
PROG
(Python)
prpr = 0
prev = 1
for i in range(2, 55):
current = prpr*3-prev
print (current, end=', ')
prpr = prev
prev = current
(Magma) [n le 2 select n-1 else -Self(n-1) + 3*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Aug 31 2015
CROSSREFS
Cf. A140167.
Sequence in context: A323105 A006130 A140167 * A352007 A182646 A190646
KEYWORD
sign,easy
AUTHOR
Alex Ratushnyak, Apr 19 2012
STATUS
approved