login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105476
Number of compositions of n when each even part can be of two kinds.
27
1, 1, 3, 6, 15, 33, 78, 177, 411, 942, 2175, 5001, 11526, 26529, 61107, 140694, 324015, 746097, 1718142, 3956433, 9110859, 20980158, 48312735, 111253209, 256191414, 589951041, 1358525283, 3128378406, 7203954255, 16589089473, 38200952238, 87968220657
OFFSET
0,3
COMMENTS
Row sums of A105475.
Starting (1, 3, 6, 15, ...) = sum of (n-1)-th row terms of triangle A140168. - Gary W. Adamson, May 10 2008
a(n) is also the number of compositions of n using 1's and 2's such that each run of like numbers can be grouped arbitrarily. For example, a(4) = 15 because 4 = (1)+(1)+(1)+(1) = (1+1)+(1)+(1) = (1)+(1+1)+(1) = (1)+(1)+(1+1) = (1+1)+(1+1) = (1+1+1)+(1) = (1)+(1+1+1) = (1+1+1+1) = (2)+(1)+(1) = (1)+(2)+(1) = (1)+(1)+(2) = (2)+(1+1) = (1+1)+(2) = (2)+(2) = (2+2). - Martin J. Erickson (erickson(AT)truman.edu), Dec 09 2008
An elephant sequence, see A175655. For the central square four A[5] vectors, with decimal values 69, 261, 321 and 324, lead to this sequence (without the first leading 1). For the corner squares these vectors lead to the companion sequence A006138. - Johannes W. Meijer, Aug 15 2010
Inverse INVERT transform of the left shifted sequence gives A000034.
Eigensequence of the triangle
1,
2, 1,
1, 2, 1,
2, 1, 2, 1,
1, 2, 1, 2, 1,
2, 1, 2, 1, 2, 1,
1, 2, 1, 2, 1, 2, 1,
2, 1, 2, 1, 2, 1, 2, 1 ... - Paul Barry, Feb 10 2011
Pisano period lengths: 1, 3, 1, 6, 24, 3, 24, 6, 1, 24, 120, 6, 156, 24, 24, 12, 16, 3, 90, 24, ... - R. J. Mathar, Aug 10 2012
LINKS
Silvana Ramaj, New Results on Cyclic Compositions and Multicompositions, Master's Thesis, Georgia Southern Univ., 2021. See p. 33.
FORMULA
G.f.: (1-x^2) / (1-x-3*x^2).
a(n) = a(n-1) + 3*a(n-2) for n>=3.
a(n) = 3*A006138(n-2), n>=2.
a(n) = ((2+sqrt(13))*(1+sqrt(13))^n - (2-sqrt(13))*(1-sqrt(13))^n)/(3*2^n*sqrt(13)) for n>0. - Bruno Berselli, May 24 2011
G.f.: 1/(1 - Sum_{k>=1} x^k*(1+x^k) ). - Joerg Arndt, Mar 09 2014
G.f.: 1/(1 - (x/(1-x)) - x^2/(1-x^2)) = 1/(1 - (x+2*x^2+x^3+2*x^4+x^5+2*x^6+...) ); in general 1/(1 - Sum_{j>=1} m(j)*x^j ) is the g.f. for compositions with m(k) sorts of part k. - Joerg Arndt, Feb 16 2015
a(n) = 3^((n-1)/2)*( 2*sqrt(3)*Fibonacci(n, 1/sqrt(3)) + Fibonacci(n, 1/sqrt(3)) ). - G. C. Greubel, Jan 15 2020
E.g.f.: 1/3 + (2/39)*exp(x/2)*(13*cosh((sqrt(13)*x)/2) + 2*sqrt(13)*sinh((sqrt(13)*x)/2)). - Stefano Spezia, Jan 15 2020
EXAMPLE
a(3)=6 because we have (3),(1,2),(1,2'),(2,1),(2',1) and (1,1,1).
MAPLE
G:=(1-z^2)/(1-z-3*z^2): Gser:=series(G, z=0, 35): 1, seq(coeff(Gser, z^n), n=1..33);
MATHEMATICA
CoefficientList[Series[(1-x^2)/(1-x-3x^2), {x, 0, 35}], x] (* or *) Join[{1}, LinearRecurrence[{1, 3}, {1, 3}, 50]] (* Vladimir Joseph Stephan Orlovsky, Jul 17 2011; typo fixed by Vincenzo Librandi, Jul 21 2013 *)
Table[Round[Sqrt[3]^(n-3)*(2*Sqrt[3]*Fibonacci[n+1, 1/Sqrt[3]] +Fibonacci[n, 1/Sqrt[3]])], {n, 0, 40}] (* G. C. Greubel, Jan 15 2020 *)
PROG
(PARI) Vec((1-x^2)/(1-x-3*x^2)+O(x^40)) \\ Charles R Greathouse IV, Jun 13 2013
(Magma) I:=[1, 1, 3]; [n le 3 select I[n] else Self(n-1)+3*Self(n-2): n in [1..35]]; // Vincenzo Librandi, Jul 21 2013
(Magma) R<x>:=PowerSeriesRing(Integers(), 33); Coefficients(R!( 1/(1-(x/(1-x))-x^2/(1-x^2)))); // Marius A. Burtea, Jan 15 2020
(Sage)
def A105476_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1-x^2)/(1-x-3*x^2) ).list()
A105476_list(40) # G. C. Greubel, Jan 15 2020
(GAP) a:=[1, 3];; for n in [3..40] do a[n]:=a[n-1]+3*a[n-2]; od; Concatenation([1], a); # G. C. Greubel, Jan 15 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Apr 09 2005
STATUS
approved