login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A105476 Number of compositions of n when each even part can be of two kinds. 27

%I

%S 1,1,3,6,15,33,78,177,411,942,2175,5001,11526,26529,61107,140694,

%T 324015,746097,1718142,3956433,9110859,20980158,48312735,111253209,

%U 256191414,589951041,1358525283,3128378406,7203954255,16589089473,38200952238,87968220657

%N Number of compositions of n when each even part can be of two kinds.

%C Row sums of A105475.

%C Starting (1, 3, 6, 15,...) = sum of (n-1)-th row terms of triangle A140168. - _Gary W. Adamson_, May 10 2008

%C a(n) is also the number of compositions of n using 1's and 2's such that each run of like numbers can be grouped arbitrarily. For example, a(4) = 15 because 4 = (1)+(1)+(1)+(1) = (1+1)+(1)+(1) = (1)+(1+1)+(1) = (1)+(1)+(1+1) = (1+1)+(1+1) = (1+1+1)+(1) = (1)+(1+1+1) = (1+1+1+1) = (2)+(1)+(1) = (1)+(2)+(1) = (1)+(1)+(2) = (2)+(1+1) = (1+1)+(2) = (2)+(2) = (2+2). - Martin J. Erickson (erickson(AT)truman.edu), Dec 09 2008

%C An elephant sequence, see A175655. For the central square four A[5] vectors, with decimal values 69, 261, 321 and 324, lead to this sequence (without the first leading 1). For the corner squares these vectors lead to the companion sequence A006138. - _Johannes W. Meijer_, Aug 15 2010

%C Inverse INVERT transform of the left shifted sequence gives A000034.

%C Eigensequence of the triangle

%C 1,

%C 2, 1,

%C 1, 2, 1,

%C 2, 1, 2, 1,

%C 1, 2, 1, 2, 1,

%C 2, 1, 2, 1, 2, 1,

%C 1, 2, 1, 2, 1, 2, 1,

%C 2, 1, 2, 1, 2, 1, 2, 1 ... - _Paul Barry_, Feb 10 2011

%C Pisano period lengths: 1, 3, 1, 6, 24, 3, 24, 6, 1, 24,120, 6,156, 24, 24, 12, 16, 3, 90, 24,... - _R. J. Mathar_, Aug 10 2012

%H Vincenzo Librandi, <a href="/A105476/b105476.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (1,3).

%F G.f.: (1-x^2) / (1-x-3*x^2).

%F a(n) = a(n-1) + 3*a(n-2) for n>=3.

%F a(n) = 3*A006138(n-2), n>=2.

%F a(n) = ((2+sqrt(13))*(1+sqrt(13))^n-(2-sqrt(13))*(1-sqrt(13))^n)/(3*2^n*sqrt(13)) for n>0. - _Bruno Berselli_, May 24 2011

%F G.f.: 1/(1 - sum(k>=1, x^k*(1+x^k))). - _Joerg Arndt_, Mar 09 2014

%F G.f.: 1/(1 - (x/(1-x)) - x^2/(1-x^2)) = 1/(1 - (x+2*x^2+x^3+2*x^4+x^5+2*x^6+...) ); in general 1/(1 - sum(j>=1, m(j)*x^j) ) is the g.f. for compositions with m(k) sorts of part k. - _Joerg Arndt_, Feb 16 2015

%e a(3)=6 because we have (3),(1,2),(1,2'),(2,1),(2',1) and (1,1,1).

%p G:=(1-z^2)/(1-z-3*z^2): Gser:=series(G,z=0,35): 1,seq(coeff(Gser,z^n),n=1..33);

%t CoefficientList[Series[(x^2 - 1) / (3 x^2 + x - 1), {x, 0, 100}], x] (* or *) Join[{1}, LinearRecurrence[{1, 3}, {1, 3}, 50]] (* _Vladimir Joseph Stephan Orlovsky_, Jul 17 2011 *)

%o (PARI) Vec((1-x^2)/(1-x-3*x^2)+O(x^99)) \\ _Charles R Greathouse IV_, Jun 13 2013

%o (MAGMA) I:=[1,1,3]; [n le 3 select I[n] else Self(n-1)+3*Self(n-2): n in [1..35]]; // _Vincenzo Librandi_, Jul 21 2013

%Y Cf. A105475, A006130, A105963, A274977.

%K nonn,easy

%O 0,3

%A _Emeric Deutsch_, Apr 09 2005

%E Typo in Mathematica code fixed by _Vincenzo Librandi_, Jul 21 2013

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 12 22:06 EST 2019. Contains 329963 sequences. (Running on oeis4.)