login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A289006 Conversion to octal of the binary expansion given by the first n terms of the period-3 sequence A011655 (repeat 0, 1, 1). 2
0, 1, 3, 6, 15, 33, 66, 155, 333, 666, 1555, 3333, 6666, 15555, 33333, 66666, 155555, 333333, 666666, 1555555, 3333333, 6666666, 15555555, 33333333, 66666666, 155555555, 333333333, 666666666, 1555555555, 3333333333, 6666666666, 15555555555, 33333333333, 66666666666, 155555555555, 333333333333, 666666666666 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

The length of the n-th term is floor((n+1)/3) digits, for all n>1. [Corrected by M. F. Hasler, Jun 23 2017]

LINKS

Table of n, a(n) for n=1..37.

Index entries for linear recurrences with constant coefficients, signature (0, 0, 11, 0, 0, -10).

FORMULA

a(3n) = floor(10^n/3) (= n times the digit '3'), a(3n+1) = floor(10^n/3)*2 (= n times the digit '6'), a(3n+2) = floor(10^(n+1)/6) - floor(10^n/9) (= digit '1' followed by n digits '5'). - M. F. Hasler, Jun 23 2017

G.f.: x^2*(1+x)*(4*x^2+2*x+1) / ( (x-1)*(1+x+x^2)*(10*x^3-1) ). - R. J. Mathar, Jun 29 2017

PROG

(PARI) { my(x='x+O('x^33)); concat([0], Vec( x*(1+x)*(1+2*x+4*x^2)/((1-x)*(1+x+x^2)*(1-10*x^3)) )) } \\ Joerg Arndt, Jun 21 2017

(PARI) A289006(n)=if(n%3==2, 10^(n\3+1)\6-10^(n\3)\9, 10^(n\3)\3<<(n%3)) \\ M. F. Hasler, Jun 23 2017

CROSSREFS

A033129(n-1) written in base 8.

Cf. A011655. Trisections: A099915, A002277, A002280.

Sequence in context: A305839 A322110 A232973 * A152167 A105476 A000599

Adjacent sequences:  A289003 A289004 A289005 * A289007 A289008 A289009

KEYWORD

nonn,base,easy

AUTHOR

Peter Schonefeld, Jun 21 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 12 12:50 EST 2019. Contains 329958 sequences. (Running on oeis4.)