The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A033129 Base-2 digits are, in order, the first n terms of the periodic sequence with initial period [1,1,0]. 9
0, 1, 3, 6, 13, 27, 54, 109, 219, 438, 877, 1755, 3510, 7021, 14043, 28086, 56173, 112347, 224694, 449389, 898779, 1797558, 3595117, 7190235, 14380470, 28760941, 57521883, 115043766, 230087533, 460175067, 920350134, 1840700269 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Number of moves to separate a Hanoi Tower into two towers of even resp. odd stones. - Martin von Gagern, May 26 2004
From Reinhard Zumkeller, Feb 22 2010: (Start)
Terms of A173593 with initial digits '11' in binary representation: a(n) = A173593(2*n-3) for n>0;
for n>0: a(3*n-1) = A083713(n);
a(n+1) - a(n) = abs(A078043(n)). (End)
LINKS
Mohammad Sajjad Hossain, reArrange.
James Metz, Twists on the Tower of Hanoi, Math. Teacher, Vol. 107, No. 9 (2014), 712-715.
FORMULA
From Paul Barry, Jan 23 2004: (Start)
Partial sums of abs(A078043).
G.f.: x*(1+x)/((1-x)*(1-2*x)*(1+x+x^2)) = x*(1+x)/(1-2*x-x^3+2*x^4).
a(n) = (6/7)*2^n - (4/21)*cos(2*Pi*n/3) - (2/21)*sqrt(3)*sin(2*Pi*n/3) - 2/3. (End)
a(n) = a(n-3) + 3 * 2^(n-3). - Martin von Gagern, May 26 2004
a(n+1) = 2*a(n) + 1 - 0^((a(n)+1) mod 4). - Reinhard Zumkeller, Feb 22 2010
a(n) = floor(2^(n+1)*3/7). - Jean-Marie Madiot, Oct 05 2012
a(n) = (1/14)*(-9 - 2*(-1)^floor((2n)/3) + (-1)^(floor((2*n + 7)/3) + 1) + 3*2^(n + 2)). - John M. Campbell, Dec 26 2016
MATHEMATICA
Table[(1/14)*(-9 - 2*(-1)^Floor[(2 n)/3] + (-1)^(1 + Floor[(1/3)*(7 + 2 n)]) + 3*2^(2 + n)), {n, 0, 100}] (* John M. Campbell, Dec 26 2016 *)
Table[FromDigits[PadRight[{}, n, {1, 1, 0}], 2], {n, 0, 40}] (* Harvey P. Dale, Oct 02 2022 *)
PROG
(PARI) A033129(n)=3<<(n+1)\7 \\ M. F. Hasler, Jun 23 2017
(Python) print([(6*2**n//7) for n in range(50)]) # Karl V. Keller, Jr., Jul 11 2022
CROSSREFS
Cf. A011655 (repeat 0,1,1), A289006 (the same in octal).
Cf. A057744, A294627 (first differences).
Sequence in context: A212444 A112306 A291753 * A079403 A065830 A055143
KEYWORD
nonn,base,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 12 13:39 EDT 2024. Contains 373331 sequences. (Running on oeis4.)