OFFSET
0,2
COMMENTS
Fixed points of the mapping defined by A067585. In binary these numbers show a regular pattern: 0, 11, 11011, 11011011, 11011011011, etc.
From Reinhard Zumkeller, Feb 22 2010: (Start)
a(n) = A173593(6*n-5) for n > 0:
terms of A173593 beginning and ending with digits '11' in binary representation;
LINKS
FORMULA
a(n) = 3*A023001(n).
Recursion: a(0) = 0, a(n+1) = (((a(n)*2)*2+1)*2+1).
a(n) = 8*a(n-1) + 3 (with a(0)=0). - Vincenzo Librandi, Aug 08 2010
a(0)=0, a(1)=3, a(n) = 9*a(n-1) - 8*a(n-2). - Harvey P. Dale, Jun 06 2013
EXAMPLE
From Zerinvary Lajos, Jan 14 2007: (Start)
Octal..........decimal:
0....................0
3....................3
33..................27
333................219
3333..............1755
33333............14043
333333..........112347
3333333.........898779
33333333.......7190235
333333333.....57521883
3333333333...460175067
etc. (End)
MATHEMATICA
(3/7)(8^Range[0, 20]-1) (* or *) LinearRecurrence[{9, -8}, {0, 3}, 30] (* or *) NestList[8#+3&, 0, 30] (* Harvey P. Dale, Jun 06 2013 *)
PROG
(PARI) a(n)=(8^n-1)*3/7 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, Jun 14 2003
STATUS
approved