login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173593
Numbers having in binary representation exactly two ones in three consecutive digits.
4
3, 5, 6, 11, 13, 22, 27, 45, 54, 91, 109, 182, 219, 365, 438, 731, 877, 1462, 1755, 2925, 3510, 5851, 7021, 11702, 14043, 23405, 28086, 46811, 56173, 93622, 112347, 187245, 224694, 374491, 449389, 748982, 898779, 1497965, 1797558, 2995931, 3595117
OFFSET
1,1
COMMENTS
a(2*n-1) = A033129(n+1);
a(3*n-2) = A113836(n+1);
a(6*n-5) = A083713(n);
a(2*n) - a(2*n-1) = A077947(n+1);
a(2*n+1) - a(2*n) = A077947(n).
FORMULA
From R. J. Mathar, Feb 24 2010: (Start)
a(n) = 2*a(n-2) + a(n-3) - 2*a(n-5).
G.f.: x*(-3-5*x+2*x^3+4*x^4)/ ((1-x) * (1+x+x^2) * (2*x^2-1)). (End)
EXAMPLE
a(10) = 91 = 1011011_2
a(11) = 109 = 1101101_2
a(12) = 182 = 10110110_2
a(13) = 219 = 11011011_2
a(14) = 365 = 101101101_2
a(15) = 438 = 110110110_2
a(16) = 731 = 1011011011_2
a(17) = 877 = 1101101101_2
a(18) = 1462 = 10110110110_2
a(19) = 1755 = 11011011011_2
a(20) = 2925 = 101101101101_2
MATHEMATICA
LinearRecurrence[{0, 2, 1, 0, -2}, {3, 5, 6, 11, 13}, 50] (* Jean-François Alcover, Feb 17 2018 *)
CROSSREFS
Cf. A007088.
Bisections A033129, A033120.
Sequence in context: A145714 A326310 A047443 * A268495 A127577 A280590
KEYWORD
nonn,base,easy
AUTHOR
Reinhard Zumkeller, Feb 22 2010
STATUS
approved