login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A173593
Numbers having in binary representation exactly two ones in three consecutive digits.
4
3, 5, 6, 11, 13, 22, 27, 45, 54, 91, 109, 182, 219, 365, 438, 731, 877, 1462, 1755, 2925, 3510, 5851, 7021, 11702, 14043, 23405, 28086, 46811, 56173, 93622, 112347, 187245, 224694, 374491, 449389, 748982, 898779, 1497965, 1797558, 2995931, 3595117
OFFSET
1,1
COMMENTS
a(2*n-1) = A033129(n+1);
a(3*n-2) = A113836(n+1);
a(6*n-5) = A083713(n);
a(2*n) - a(2*n-1) = A077947(n+1);
a(2*n+1) - a(2*n) = A077947(n).
FORMULA
From R. J. Mathar, Feb 24 2010: (Start)
a(n) = 2*a(n-2) + a(n-3) - 2*a(n-5).
G.f.: x*(-3-5*x+2*x^3+4*x^4)/ ((1-x) * (1+x+x^2) * (2*x^2-1)). (End)
EXAMPLE
a(10) = 91 = 1011011_2
a(11) = 109 = 1101101_2
a(12) = 182 = 10110110_2
a(13) = 219 = 11011011_2
a(14) = 365 = 101101101_2
a(15) = 438 = 110110110_2
a(16) = 731 = 1011011011_2
a(17) = 877 = 1101101101_2
a(18) = 1462 = 10110110110_2
a(19) = 1755 = 11011011011_2
a(20) = 2925 = 101101101101_2
MATHEMATICA
LinearRecurrence[{0, 2, 1, 0, -2}, {3, 5, 6, 11, 13}, 50] (* Jean-François Alcover, Feb 17 2018 *)
CROSSREFS
Cf. A007088.
Bisections A033129, A033120.
Sequence in context: A145714 A326310 A047443 * A268495 A127577 A280590
KEYWORD
nonn,base,easy
AUTHOR
Reinhard Zumkeller, Feb 22 2010
STATUS
approved