OFFSET
1,1
COMMENTS
Numbers m such that the arithmetic mean of the divisors of m is an integer but the quadratic mean (the root mean square) of the divisors of m is not an integer.
Numbers m such that A(m) = A000203(m) / A000005(m) is an integer but Q(m) = sqrt(A001157(m) / A000005(m)) is not an integer.
Corresponding values of A(m): 2, 3, 3, 6, 7, 6, 6, 9, 10, 7, 8, 9, 12, 10, 15, 9, 16, 12, 12, 19, 15, 14, 12, 22, 14, 13, 18, ...
Corresponding values of Q(m): sqrt(5), sqrt(13), sqrt(25/2), sqrt(61), sqrt(85), sqrt(125/2), sqrt(65), sqrt(145), sqrt(181), ...
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..10000
MATHEMATICA
Select[Range[120], IntegerQ[Mean[Divisors[#]]]&&!IntegerQ[RootMeanSquare[ Divisors[ #]]]&] (* Harvey P. Dale, Mar 04 2023 *)
PROG
(Magma) [m: m in [1..10^6] | IsIntegral(SumOfDivisors(m) / NumberOfDivisors(m)) and not IsIntegral(Sqrt(&+[d^2: d in Divisors(m)] / NumberOfDivisors(m)))]
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Oct 18 2019
STATUS
approved