login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A289004
a(n) = 2*a(n-1) - a(n-2) + 2*a(n-4) - a(n-5) + a(n-7) - a(n-8) - a(n-10) for n >= 10, where a(0) = 2, a(1) = 4, a(2) = 7, a(3) = 11, a(4) = 18, a(5) = 31, a(6) = 52, a(7) = 89, a(9) = 151, a(9) = 257.
6
2, 4, 7, 11, 18, 31, 52, 89, 151, 257, 438, 748, 1277, 2179, 3719, 6348, 10837, 18499, 31579, 53908, 92027, 157099, 268182, 457812, 781531, 1334153, 2277532, 3887973, 6637157, 11330291, 19341939, 33018621, 56366084, 96222539, 164261491, 280410777, 478689212
OFFSET
0,1
COMMENTS
Conjecture: a(n) is the number of letters (0's and 1's) in the n-th iterate of the mapping 00->0010, 01->001, 10->010, starting with 00; see A289001.
LINKS
FORMULA
a(n) = 2*a(n-1) - a(n-2) + 2*a(n-4) - a(n-5) + a(n-7) - a(n-8) - a(n-10) for n >= 10, where a(0) = 2, a(1) = 4, a(2) = 7, a(3) = 11, a(4) = 18, a(5) = 31, a(6) = 52, a(7) = 89, a(9) = 151, a(9) = 257.
G.f.: (2 + x^2 + x^3 - x^4 - 2*x^6 - x^7 - 2*x^8 - 3*x^9) / ((1 - x)*(1 - x - 2*x^4 - x^5 - x^6 - 2*x^7 - x^8 - x^9)). - Colin Barker, Jun 26 2017
MATHEMATICA
LinearRecurrence[{2, -1, 0, 2, -1, 0, 1, -1, 0, -1}, {2, 4, 7, 11, 18, 31, 52, 89, 151, 257}, 20]
PROG
(PARI) Vec((2 + x^2 + x^3 - x^4 - 2*x^6 - x^7 - 2*x^8 - 3*x^9) / ((1 - x)*(1 - x - 2*x^4 - x^5 - x^6 - 2*x^7 - x^8 - x^9)) + O(x^40)) \\ Colin Barker, Jun 26 2017
CROSSREFS
Cf. A288216.
Sequence in context: A289077 A228560 A018063 * A000570 A239552 A023426
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 26 2017
STATUS
approved