login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188106
Triangle T(n,k) with the coefficient [x^k] of 1/(1-2*x-x^2+x^3)^(n-k+1) in row n, column k.
3
1, 1, 2, 1, 4, 5, 1, 6, 14, 11, 1, 8, 27, 42, 25, 1, 10, 44, 101, 119, 56, 1, 12, 65, 196, 342, 322, 126, 1, 14, 90, 335, 770, 1080, 847, 283, 1, 16, 119, 526, 1495, 2772, 3248, 2180, 636, 1, 18, 152, 777, 2625, 6032, 9366, 9414, 5521, 1429, 1, 20, 189, 1096, 4284, 11718, 22590, 30148, 26517, 13804, 3211
OFFSET
0,3
COMMENTS
Modified versions of the generating function for D(0)={1,2,5,11,...}=A006054(m+2), m=0,1,2,..., are related to rhombus substitution tilings (see A187068, A187069 and A187070). The columns of the triangle have generating functions 1/(1-x), 2*x/(1-x)^2, x^2*(5-x)/(1-x)^3, x^3*(11-2*x-x^2)/(1-x)^4, x^4*(25-6*x-3*x^2)/(1-x)^5, ..., for which the sum of the signed coefficients in the n-th numerator equals 2^n. The diagonals {1,2,5,...}, {1,4,14,...}, ..., are generated by successive series expansion of F(n+1,x), n=0,1,..., where F(n,x)=1/(1-2*x-x^2+x^3)^n. For example, the second diagonal is {T{1,0},T{2,1},...}={1,4,14,...}=A189426, for which successive partial sums give A189427 (excluding the zero terms). Moreover, the diagonals correspond to successive convolutions of A006054 (= the first diagonal) with itself.
FORMULA
Sum_{k=0..n} T(n,k) = A033505(n).
T(n,0) = 1.
T(n,2) = A014106(n-1).
T(n,3) = (n-2)*(4*n^2+2*n-9)/3.
T(n,4) = (n-2)*(n-3)*(2*n+7)*(2*n-3)/6.
EXAMPLE
1;
1, 2;
1, 4, 5;
1, 6, 14, 11;
1, 8, 27, 42, 25;
1, 10, 44, 101, 119, 56;
1, 12, 65, 196, 342, 322, 126;
1, 14, 90, 335, 770, 1080, 847, 283;
1, 16, 119, 526, 1495 ...
MAPLE
A188106 := proc(n, k) 1/(1-2*x-x^2+x^3)^(n-k+1) ; coeftayl(%, x=0, k) ; end proc:
seq(seq(A188106(n, k), k=0..n), n=0..10) ; # R. J. Mathar, Mar 22 2011
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
L. Edson Jeffery, Mar 20 2011
EXTENSIONS
a(43) and following corrected by Georg Fischer, Oct 14 2023
STATUS
approved