The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A188109 Triangle T(n,m), [x*A(x)]^m=sum(n>=m T(n,m)*x^n), where A(x) satisfies x*A(x)^2= -(2*x*A(x)+sqrt(1-4*x*A(x))-1)/(4*x*A(x)+sqrt(1-4*x*(A(x))-1) 0
 1, 3, 1, 19, 6, 1, 152, 47, 9, 1, 1367, 418, 84, 12, 1, 13195, 4007, 825, 130, 15, 1, 133556, 40368, 8433, 1400, 185, 18, 1, 1398696, 421332, 88872, 15239, 2170, 249, 21, 1, 15029311, 4515706, 959080, 168112, 25100, 3162, 322, 24, 1, 164764985, 49405895, 10547361, 1878462, 289788, 38772, 4403, 404, 27, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Vladimir Kruchinin, D. V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2011-2013. FORMULA T(n,m) = m/n*A035324(2*n-m,n). EXAMPLE 1; 3, 1; 19, 6, 1; 152, 47, 9, 1; 1367, 418, 84, 12, 1; 13195, 4007, 825, 130, 15, 1; 133556, 40368, 8433, 1400, 185, 18, 1; 1398696, 421332, 88872, 15239, 2170, 249, 21, 1 MATHEMATICA (* S = A035324 *) S[n_, m_] /; n >= m >= 1 := S[n, m] = 2(2(n-1)+m)(S[n-1, m]/n) + m(S[n-1, m-1]/n); S[n_, m_] /; n < m = 0; S[n_, 0] = 0; S[1, 1] = 1; T[n_, m_] := m/n S[2n-m, n]; Table[T[n, m], {n, 1, 10}, {m, 1, n}] // Flatten (* Jean-François Alcover, Feb 16 2019 *) CROSSREFS Cf. A035324 Sequence in context: A016480 A086156 A227888 * A247232 A147076 A027537 Adjacent sequences: A188106 A188107 A188108 * A188110 A188111 A188112 KEYWORD nonn,tabl AUTHOR Vladimir Kruchinin, Mar 21 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 29 06:03 EST 2023. Contains 359915 sequences. (Running on oeis4.)