login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188110
Triangle T(n,m), [x*A(x)]^m=sum(n>=m T(n,m)*x^n), where A(x) satisfies x*A(x)^3= -(2*x*A(x)^2+sqrt(1-4*x*A(x)^2)-1)/(4*x*A(x)^2+sqrt(1-4*x*A(x)^2)-1)
1
1, 3, 1, 28, 6, 1, 350, 65, 9, 1, 5020, 868, 111, 12, 1, 78023, 12924, 1581, 166, 15, 1, 1278340, 205766, 24468, 2516, 230, 18, 1, 21740636, 3428438, 399735, 40489, 3700, 303, 21, 1, 380161308, 59034600, 6784186, 679460, 61905, 5160, 385, 24, 1, 6792111260, 1042169972, 118444293, 11759612, 1067738, 89715, 6923, 476, 27, 1
OFFSET
1,2
LINKS
Vladimir Kruchinin, D. V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2011-2013.
FORMULA
T(n,m) = m/(2*n-m)*A035324(3*n-2*m,2*n-m).
MATHEMATICA
(* S = A035324 *)
S[n_, m_] /; n >= m >= 1 := S[n, m] = 2(2(n-1) + m)(S[n - 1, m]/n) + m (S[n - 1, m - 1]/n); S[n_, m_] /; n < m = 0; S[n_, 0] = 0; S[1, 1] = 1;
T[n_, m_] := m/(2n-m) S[3n - 2m, 2n - m];
Table[T[n, m], {n, 1, 10}, {m, 1, n}] // Flatten (* Jean-François Alcover, Feb 16 2019 *)
CROSSREFS
Cf. A035324.
Sequence in context: A165624 A287206 A288517 * A358165 A298399 A365087
KEYWORD
nonn,tabl
AUTHOR
Vladimir Kruchinin, Mar 21 2011
STATUS
approved