login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A187068
Let i be in {1,2,3}, let r >= 0 be an integer and n=2*r+i-1. Then a(n)=a(2*r+i-1) gives the quantity of H_(7,1,0) tiles in a subdivided H_(7,i,r) tile after linear scaling by the factor x^r, where x=sqrt((2*cos(Pi/7))^2-1).
9
1, 0, 0, 0, 1, 1, 1, 2, 3, 5, 6, 11, 14, 25, 31, 56, 70, 126, 157, 283, 353, 636, 793, 1429, 1782, 3211, 4004, 7215, 8997, 16212, 20216, 36428, 45425, 81853, 102069, 183922, 229347, 413269, 515338, 928607, 1157954, 2086561, 2601899
OFFSET
0,8
COMMENTS
(Start) See A187070 for supporting theory. Define the matrix
U_2=
(0 0 1)
(0 1 1)
(1 1 1).
Let r>=0, and let A_r be the r-th "block" defined by A_r={a(2*r),a(2*r+1),a(2*r+2)}. Note that A_r-2*A_(r-1)-A_(r-2)+A_(r-3)={0,0,0}. Let n=2*r+i-1 and M=(m_(i,j))=(U_2)^r. Then A_r corresponds component-wise to the first column of M, and a(n)=a(2*r+i-1)=m_(i,1) gives the quantity of H_(7,1,0) tiles that should appear in a subdivided H_(7,i,r) tile. (End)
Since a(2*r+2)=a(2*(r+1)) for all r, this sequence arises by concatenation of first-column entries m_(1,1) and m_(2,1) from successive matrices M=(U_2)^r.
This sequence is a nontrivial extension of both A038196 and A187070.
LINKS
Roman Witula, Damian Slota and Adam Warzynski, Quasi-Fibonacci Numbers of the Seventh Order, J. Integer Seq., 9 (2006), Article 06.4.3.
FORMULA
{a(n+2)} = A187070.
a(n) = 2*a(n-2) + a(n-4) - a(n-6).
G.f.: (1-2*x^2+x^5)/(1-2*x^2-x^4+x^6).
Closed-form: a(n) = (1/14)*[[X_1+Y_1*(-1)^(n-1)]*[(w_2)^2-(w_3)^2]*(w_1)^(n-1)+[X_2+Y_2*(-1)^(n-1)]*[(w_3)^2-(w_1)^2]*(w_2)^(n-1)+[X_3+Y_3*(-1)^(n-1)]*[(w_1)^2-(w_2)^2]*(w_3)^(n-1)], where w_k = sqrt[(2cos(k*Pi/7))^2-1], X_k = (w_k)^5-2*(w_k)^3+1 and Y_k = -(w_k)^5+2*(w_k)^3+1, k=1,2,3.
EXAMPLE
(Start) Suppose r=3. Then
A_r = A_3 = {a(2*r,a(2*r+1),a(2*r+2)} = {a(6),a(7),a(8)} = {1,2,3},
corresponding to the entries in the first column of
M = m_(i,j) = (U_2)^3 =
(1 2 3)
(2 4 5)
(3 5 6).
Suppose i=2. Setting n=2*r+i-1, then a(n) = a(2*r+i-1) = a(6+2-1) = a(7) = m_(2,1) = 2. Hence a subdivided H_(7,2,3) tile should contain a(7) = m_(2,1) = 2 H_(7,1,0) tiles. (End)
MATHEMATICA
a[0] = 1; a[1] = a[2] = a[3] = 0; a[4] = a[5] = 1; a[_?Negative] = 0; a[n_] := a[n] = 2*a[n-2] + a[n-4] - a[n-6]; Table[a[n], {n, 0, 42}] (* Jean-François Alcover, Jan 02 2013 *)
CoefficientList[Series[(1 - 2*x^2 + x^5)/(1 - 2*x^2 - x^4 + x^6), {x, 0, 50}], x] (* G. C. Greubel, Jul 06 2017 *)
PROG
(PARI) x='x+O('x^50); Vec((1-2*x^2+x^5)/(1-2*x^2-x^4+x^6)) \\ G. C. Greubel, Jul 06 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
L. Edson Jeffery, Mar 06 2011
STATUS
approved