The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A038728 Configurations of linear chains in a 5-dimensional hypercubic lattice. 1
 0, 0, 0, 0, 2240, 35840, 433040, 4862560, 51759280, 527313040, 5218528800, 50434399280, 478624474160, 4473452644480 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS In the notation of Nemirovsky et al. (1992), a(n), the n-th term of the current sequence is C_{n,m} with m=2 (and d=5). Here, for a d-dimensional hypercubic lattice, C_{n,m} is "the number of configurations of an n-bond self-avoiding chain with m neighbor contacts." (Let n >= 1. For d=2, we have C(n,m=2) = A033323(n); for d=3, we have C(n,m=2) = A049230(n); and for d=4, we have C(n,m=2) = A046788(n).) - Petros Hadjicostas, Jan 05 2019 LINKS Table of n, a(n) for n=1..14. A. M. Nemirovsky, K. F. Freed, T. Ishinabe, and J. F. Douglas, Marriage of exact enumeration and 1/d expansion methods: lattice model of dilute polymers, J. Statist. Phys., 67 (1992), 1083-1108; see Table 1 on p. 1090. CROSSREFS Cf. A033323, A046788, A049230. Sequence in context: A372248 A079013 A186865 * A002520 A337416 A183771 Adjacent sequences: A038725 A038726 A038727 * A038729 A038730 A038731 KEYWORD nonn,more AUTHOR N. J. A. Sloane, May 02 2000 EXTENSIONS Terms a(10) and a(11) were copied from Table 1 (p. 1090) of Nemirovsky et al. (1992) by Petros Hadjicostas, Jan 05 2019 Name edited by Petros Hadjicostas, Jan 05 2019 a(12)-a(14) from Sean A. Irvine, Feb 01 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 5 12:17 EDT 2024. Contains 374950 sequences. (Running on oeis4.)