

A046788


Configurations of linear chains in a 4dimensional hypercubic lattice.


3



0, 0, 0, 0, 960, 11136, 98256, 820896, 6523248, 49672560, 367817184
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,5


COMMENTS

In the notation of Nemirovsky et al. (1992), a(n), the nth term of the current sequence is C_{n,m} with m=2 (and d=4). Here, for a ddimensional hypercubic lattice, C_{n,m} is "the number of configurations of an nbond selfavoiding chain with m neighbor contacts." (Let n >= 1. For d=2, we have C(n,m=2) = A033323(n); for d=3, we have C(n,m=2) = A049230(n); and for d=5, we have C(n,m=2) = A038728(n).)  Petros Hadjicostas, Jan 05 2019


LINKS

Table of n, a(n) for n=1..11.
A. M. Nemirovsky, K. F. Freed, T. Ishinabe, and J. F. Douglas, Marriage of exact enumeration and 1/d expansion methods: lattice model of dilute polymers, J. Statist. Phys., 67 (1992), 10831108; see Table 1 on p. 1088.


FORMULA

Cf. A033323, A038728, A049230.


CROSSREFS

Sequence in context: A247723 A330496 A057666 * A206079 A203732 A157851
Adjacent sequences: A046785 A046786 A046787 * A046789 A046790 A046791


KEYWORD

nonn,more


AUTHOR

N. J. A. Sloane


EXTENSIONS

Name edited by Petros Hadjicostas, Jan 05 2019


STATUS

approved



