

A049230


Configurations of linear chains in a cubic lattice.


2



0, 0, 0, 0, 288, 2112, 11928, 66192, 353544, 1817208, 9092592
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,5


COMMENTS

In the notation of Nemirovsky et al. (1992), a(n), the nth term of this sequence is C_{n,m} for m=2 (and d=3). Here, C_{n,m} is the total number of configurations "for chains of n links with m nearestneighbor contacts" in a ddimensional lattice (with d=3). These numbers appear in Table I (p. 1088).  Petros Hadjicostas, Jan 03 2019


LINKS

Table of n, a(n) for n=1..11.
A. M. Nemirovsky, K. F. Freed, T. Ishinabe, and J. F. Douglas, Marriage of exact enumeration and 1/d expansion methods: lattice model of dilute polymers, J. Statist. Phys., 67 (1992), 10831108.


CROSSREFS

Cf. A033155, A033323, A034006, A038729.
Sequence in context: A235078 A235072 A235769 * A322677 A235552 A033692
Adjacent sequences: A049227 A049228 A049229 * A049231 A049232 A049233


KEYWORD

nonn,more


AUTHOR

N. J. A. Sloane


EXTENSIONS

Name edited by Petros Hadjicostas, Jan 03 2019


STATUS

approved



