|
|
A049231
|
|
Primes p such that p - 2 is squarefree.
|
|
5
|
|
|
3, 5, 7, 13, 17, 19, 23, 31, 37, 41, 43, 53, 59, 61, 67, 71, 73, 79, 89, 97, 103, 107, 109, 113, 131, 139, 151, 157, 163, 167, 179, 181, 193, 197, 199, 211, 223, 229, 233, 239, 241, 251, 257, 269, 271, 283, 293, 307, 311, 313, 331, 337, 347, 349, 359, 367, 373
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
This sequence is infinite and its relative density in the sequence of the primes is equal to 2 * Product_{p prime} (1-1/(p*(p-1)) = 2 * A005596 = 0.747911... (Mirsky, 1949). - Amiram Eldar, Feb 27 2021
|
|
LINKS
|
|
|
FORMULA
|
Primes p such that abs(mu(p-2)) = 1.
|
|
MATHEMATICA
|
Select[Prime[Range[100]], SquareFreeQ[#-2]&] (* Harvey P. Dale, Mar 03 2018 *)
|
|
PROG
|
(PARI) isok(p) = isprime(p) && issquarefree(p-2); \\ Michel Marcus, Dec 31 2013
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|