|
|
A092195
|
|
Primes p that do not divide A001008(k), the numerator of the k-th harmonic number H(k), for any k < p-1.
|
|
0
|
|
|
3, 5, 7, 13, 17, 19, 23, 31, 41, 47, 59, 67, 71, 73, 79, 83, 89, 101, 103, 107, 113, 127, 131, 139, 149, 151, 157, 163, 167, 179, 181, 191, 193, 197, 211, 223, 229, 233, 239, 241, 251, 263, 277, 281, 283, 293, 307, 311, 317, 331, 337, 349, 359, 367, 373, 383
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Harmonic primes A092101 are a subset of these primes. Because these primes are analogous to the regular primes A007703 that divide the numerators of Bernoulli numbers, they might be called H-regular primes. The density of these primes is about 0.6 -- very close to the density of regular primes.
|
|
LINKS
|
Table of n, a(n) for n=1..56.
Eric Weisstein's World of Mathematics, Harmonic Number
Eric Weisstein's World of Mathematics, Regular Prime
|
|
MATHEMATICA
|
n=1; Table[While[cnt=0; n++; p=Prime[n]; k=1; h=0; While[k<=(p-1)/2, h=h+1/k; If[Mod[Numerator[h], p]==0, cnt++ ]; k++ ]; cnt>0, ]; p, {100}]
|
|
CROSSREFS
|
Cf. A072984 (least k such that prime(n) divides A001008(k)).
Sequence in context: A173912 A049231 A268629 * A046066 A327819 A045398
Adjacent sequences: A092192 A092193 A092194 * A092196 A092197 A092198
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
T. D. Noe, Feb 24 2004
|
|
STATUS
|
approved
|
|
|
|