login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A033692
Theta series of lattice D_4 tensor D_4 (dimension 16, det. 65536, min. norm 4).
1
1, 0, 288, 3072, 38880, 110592, 654720, 1161216, 4964832, 6758400, 23385024, 27509760, 84872832, 88584192, 246470400, 241330176, 635597280, 579280896, 1432192416, 1261992960, 3030460992, 2543861760, 5832383616, 4806715392, 10864625280, 8616886272, 18780246720
OFFSET
0,3
COMMENTS
This theta series is an element of the space of modular forms on Gamma_0(4) of weight 8 and dimension 5. - Andy Huchala, May 15 2023
PROG
(Magma)
prec := 30;
basis := [1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, -1, 1];
S := Matrix(16, basis);
L := LatticeWithBasis(S);
T := ThetaSeriesModularForm(L);
Coefficients(PowerSeries(T, prec)); // Andy Huchala, May 15 2023
CROSSREFS
Sequence in context: A049230 A322677 A235552 * A182026 A229506 A332429
KEYWORD
nonn
EXTENSIONS
More terms from Andy Huchala, May 15 2023
STATUS
approved