login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A033690
Theta series of A2[hole]^4.
5
1, 4, 14, 28, 57, 84, 148, 196, 312, 364, 546, 624, 910, 988, 1352, 1456, 1974, 2072, 2710, 2800, 3705, 3724, 4816, 4788, 6188, 6076, 7658, 7644, 9620, 9352, 11536, 11284, 14183, 13468, 16542, 15996, 19864, 18928, 22820, 21904, 26880, 25284
OFFSET
0,2
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 111, Eq (63)^4.
FORMULA
a(n) = A033685^4.
Expansion of q^(-4/3) * (eta(q^3)^3 / eta(q))^4 in powers of q. - Michael Somos, Aug 22 2007
Expansion of c(q)^4 / (81 * q^(4/3)) in powers of q where c() is a cubic AGM function. - Michael Somos, Aug 22 2007
Euler transform of period 3 sequence [ 4, 4, -8, ...]. - Michael Somos, Aug 22 2007
A092342(n) = A000731(n) + 81*a(n-1). - Michael Somos, Aug 22 2007
EXAMPLE
q^4 + 4*q^7 + 14*q^10 + 28*q^13 + 57*q^16 + 84*q^19 + 148*q^22 + ...
MATHEMATICA
s = (QPochhammer[q^3]^3/QPochhammer[q])^4 + O[q]^45; CoefficientList[s, q] (* Jean-François Alcover, Nov 04 2015 *)
PROG
(PARI) {a(n) = local(A); if(n<0, 0, A = x*O(x^n); polcoeff( (eta(x^3 +A)^3 / eta(x +A) )^4, n))} /* Michael Somos, Aug 22 2007 */
CROSSREFS
Cf. A033685.
Sequence in context: A066907 A130439 A289179 * A316213 A296985 A338311
KEYWORD
nonn
STATUS
approved