login
A033691
Minimal number of vertices in 1-1 deficient regular graph where minimal degree is 1 and maximal degree is n.
2
4, 8, 12, 20, 24, 32, 40, 52, 60, 72, 84, 100, 112, 128, 144, 164, 180, 200, 220, 244, 264, 288, 312, 340, 364, 392, 420, 452, 480, 512, 544, 580, 612, 648, 684, 724, 760, 800, 840, 884, 924, 968, 1012, 1060, 1104, 1152, 1200, 1252, 1300, 1352, 1404, 1460
OFFSET
2,1
COMMENTS
A 1-1 deficient regular graph is one in which every vertex has the same degree as all of its neighbors except exactly one and its degree differs from the degree of this neighbor by exactly 1.
LINKS
FORMULA
a(2*i) = 2*i*(i+1) i=1, 2, 3, ...; a(4*i+3) = 2*(i+1)*(4*i+4) i=0, 1, 2, ...; a(4*i+5) = 4*(2*i^2+6*i+5) i=1, 2, 3, ...
Empirical G.f.: -4*x^2*(x^5-2*x^4+x^3+1) / ((x-1)^3*(x+1)*(x^2+1)). [Colin Barker, Jan 15 2013]
MATHEMATICA
a[n_?EvenQ] := n*(n+2)/2; a[n_ /; Mod[n, 4] == 3] := (n+1)^2/2; a[n_ /; Mod[n, 4] == 1] := (n^2 + 2*n + 5)/2; Table[a[n], {n, 2, 53}] (* Jean-François Alcover, Oct 10 2011 *)
CROSSREFS
Sequence in context: A311655 A311656 A311657 * A090658 A268799 A359955
KEYWORD
easy,nice,nonn
AUTHOR
Lisa R. Macon (lmacon(AT)valencia.cc.fl.us)
EXTENSIONS
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 23 2003
STATUS
approved